Kinetic equations for diffusion in the presence of entropic barriers -: art. no. 061106

被引:389
|
作者
Reguera, D [1 ]
Rubí, JM [1 ]
机构
[1] Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 06期
关键词
D O I
10.1103/PhysRevE.64.061106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a system in the presence of potential barriers. The result is applied to a description of the evolution of systems whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Particle definition in the presence of black holes -: art. no. 024014
    Schützhold, R
    PHYSICAL REVIEW D, 2001, 63 (02)
  • [32] Thermal equations of state of the α, β, and ω phases of zirconium -: art. no. 184119
    Zhao, YS
    Zhang, JZ
    Pantea, C
    Qian, J
    Daemen, LL
    Rigg, PA
    Hixson, RS
    Gray, GT
    Yang, YP
    Wang, LP
    Wang, YB
    Uchida, T
    PHYSICAL REVIEW B, 2005, 71 (18)
  • [33] Conformal hyperbolic formulation of the Einstein equations -: art. no. 064017
    Alcubierre, M
    Brügmann, B
    Miller, M
    Suen, WM
    PHYSICAL REVIEW D, 1999, 60 (06):
  • [34] Turbulent wake solutions of the Prandtl α equations -: art. no. 036304
    Putkaradze, V
    Weidman, P
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [35] Expansion for the solutions of the Bogomolny equations on the torus -: art. no. 008
    González-Arroyo, A
    Ramos, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (07):
  • [36] BPS equations in six and eight dimensions - art. no. 025021
    Bak, D
    Lee, K
    Park, JH
    PHYSICAL REVIEW D, 2002, 66 (02)
  • [37] Flow equations in generalized braneworld scenarios -: art. no. 043513
    Calcagni, G
    Liddle, AR
    Ramírez, E
    PHYSICAL REVIEW D, 2005, 72 (04): : 1 - 10
  • [38] Bogomolny equations for vortices in the noncommutative torus -: art. no. 074
    Forgács, P
    Lozano, GS
    Moreno, EF
    Schaposnik, FA
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (07):
  • [39] Modeling diffusion of innovations in a social network -: art. no. 026121
    Guardiola, X
    Díaz-Guilera, A
    Pérez, CJ
    Arenas, A
    Llas, M
    PHYSICAL REVIEW E, 2002, 66 (02):
  • [40] Diffusion of the magnetization profile in the XX model -: art. no. 066123
    Ogata, Y
    PHYSICAL REVIEW E, 2002, 66 (06): : 7