Zero-shot recognition with latent visual attributes learning

被引:2
|
作者
Xie, Yurui [1 ,2 ]
He, Xiaohai [1 ]
Zhang, Jing [1 ]
Luo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Peoples R China
[2] Chengdu Univ Informat Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; Human-designed attributes; Dictionary learning; Visual attributes; Semantic representation; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1007/s11042-020-09316-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Zero-shot learning (ZSL) aims to recognize novel object categories by means of transferring knowledge extracted from the seen categories (source domain) to the unseen categories (target domain). Recently, most ZSL methods concentrate on learning a visual-semantic alignment to bridge image features and their semantic representations by relying solely on the human-designed attributes. However, few works study whether the human-designed attributes are discriminative enough for recognition task. To address this problem, we propose a couple semantic dictionaries (CSD) learning approach to exploit the latent visual attributes and align the visual-semantic spaces at the same time. Specifically, the learned visual attributes are elegantly incorporated into the semantic representation of image feature and then consolidate the discriminative visual cues for object recognition. In addition, existing ZSL methods suffer from the domain shift issue due to the source domain and target domain have completely separated label spaces. We further employ the visual-semantic alignment and latent visual attributes jointly from source domain to regularise the learning of target domain, which ensures the expansibility of information transfer across domains. We formulate this as an optimization problem on a unified objective and propose an iterative solver. Extensive experiments on two challenging benchmark datasets demonstrate that our proposed approach outperforms several state-of-the-art ZSL methods.
引用
收藏
页码:27321 / 27335
页数:15
相关论文
共 50 条
  • [41] Zero-Shot Visual Emotion Recognition by Exploiting BERT
    Kang, Hyunwook
    Hazarika, Devamanyu
    Kim, Dongho
    Kim, Jihie
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2023, 543 : 485 - 494
  • [42] Discriminative Latent Visual Space For Zero-Shot Object Classification
    Roy, Abhinaba
    Banerjee, Biplab
    Murino, Vittorio
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2552 - 2557
  • [43] Deep Representation of Hierarchical Semantic Attributes for Zero-shot Learning
    Zhang, Zhaocheng
    Yang, Gang
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [44] Zero-Shot Learning with Missing Attributes using Semantic Correlations
    Braytee, Ali
    Naji, Mohamad
    Anaissi, Ali
    Chaturvedi, Kunal
    Prasad, Mukesh
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [45] INCREMENTAL ZERO-SHOT LEARNING BASED ON ATTRIBUTES FOR IMAGE CLASSIFICATION
    Xue, Nan
    Wang, Yi
    Fan, Xin
    Min, Maomao
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 850 - 854
  • [46] Zero-shot learning via visual feature enhancement and dual classifier learning for image recognition
    Zhao, Peng
    Xue, Huihui
    Ji, Xia
    Liu, Huiting
    Han, Li
    INFORMATION SCIENCES, 2023, 642
  • [47] Learning Invariant Visual Representations for Compositional Zero-Shot Learning
    Zhang, Tian
    Liang, Kongming
    Du, Ruoyi
    Sun, Xian
    Ma, Zhanyu
    Guo, Jun
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 339 - 355
  • [48] Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition
    Chai, Chunlai
    Lou, Yukuan
    Zhang, Shijin
    Hua, Ming
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4751 - 4757
  • [49] Joint Visual and Semantic Optimization for zero-shot learning
    Wu, Hanrui
    Yan, Yuguang
    Chen, Sentao
    Huang, Xiangkang
    Wu, Qingyao
    Ng, Michael K.
    KNOWLEDGE-BASED SYSTEMS, 2021, 215 (215)
  • [50] Hierarchical Prompt Learning for Compositional Zero-Shot Recognition
    Wang, Henan
    Yang, Muli
    Wei, Kun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1470 - 1478