Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups

被引:15
|
作者
Bizyaev, Ivan A. [1 ]
Borisov, Alexey V. [1 ,2 ]
Kilin, Alexander A. [1 ]
Mamaev, Ivan S. [3 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
[3] Izhevsk State Tech Univ, Ul Studencheskaya 7, Izhevsk 426069, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2016年 / 21卷 / 06期
基金
俄罗斯科学基金会;
关键词
sub-Riemannian geometry; Carnot group; Poincare map; first integrals; MILLS CLASSICAL MECHANICS; HAMILTONIAN-SYSTEMS; POTENTIALS; DISTRIBUTIONS;
D O I
10.1134/S1560354716060125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector (3, 6, 14), the other is defined by two generatrices and growth vector (2, 3, 5, 8). Using a Poincar, map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.
引用
收藏
页码:759 / 774
页数:16
相关论文
共 50 条
  • [31] Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
    Enrico Le Donne
    Terhi Moisala
    Mathematische Zeitschrift, 2021, 299 : 2257 - 2285
  • [32] A SUB-RIEMANNIAN MAXIMUM PRINCIPLE AND ITS APPLICATION TO THE p-LAPLACIAN IN CARNOT GROUPS
    Bieske, Thomas
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 119 - 134
  • [33] Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Warhurst, Ben
    ADVANCES IN MATHEMATICS, 2009, 220 (02) : 560 - 619
  • [34] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [35] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [36] On a Certain Sub-Riemannian Geodesic Flow on the Heisenberg Group
    Agapov, S. V.
    Borchashvili, M. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (06) : 943 - 951
  • [37] On a Certain Sub-Riemannian Geodesic Flow on the Heisenberg Group
    S. V. Agapov
    M. R. Borchashvili
    Siberian Mathematical Journal, 2017, 58 : 943 - 951
  • [38] On Integrability of Certain Rank 2 Sub-Riemannian Structures
    Kruglikov, Boris S.
    Vollmer, Andreas
    Lukes-Gerakopoulos, Georgios
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (05): : 502 - 519
  • [39] On integrability of certain rank 2 sub-Riemannian structures
    Boris S. Kruglikov
    Andreas Vollmer
    Georgios Lukes-Gerakopoulos
    Regular and Chaotic Dynamics, 2017, 22 : 502 - 519
  • [40] Polynomial Sub-Riemannian Differentiability on Carnot–Carathéodory Spaces
    M. B. Karmanova
    Siberian Mathematical Journal, 2018, 59 : 860 - 869