Strategies to enable large-scale proteomics for reproducible research

被引:81
|
作者
Poulos, Rebecca C. [1 ]
Hains, Peter G. [1 ]
Shah, Rohan [1 ]
Lucas, Natasha [1 ]
Xavier, Dylan [1 ]
Manda, Srikanth S. [1 ]
Anees, Asim [1 ]
Koh, Jennifer M. S. [1 ]
Mahboob, Sadia [1 ]
Wittman, Max [1 ]
Williams, Steven G. [1 ]
Sykes, Erin K. [1 ]
Hecker, Michael [1 ]
Dausmann, Michael [1 ]
Wouters, Merridee A. [1 ]
Ashman, Keith [2 ]
Yang, Jean [3 ]
Wild, Peter J. [4 ,5 ]
deFazio, Anna [6 ,7 ,8 ]
Balleine, Rosemary L. [1 ]
Tully, Brett [1 ]
Aebersold, Ruedi [9 ,10 ]
Speed, Terence P. [11 ,12 ]
Liu, Yansheng [13 ,14 ]
Reddel, Roger R. [1 ]
Robinson, Phillip J. [1 ]
Zhong, Qing [1 ]
机构
[1] Univ Sydney, Fac Med & Hlth, Childrens Med Res Inst, ProCan, Westmead, NSW, Australia
[2] SCIEX Ltd, 2 Gilda Court, Mulgrave, Vic, Australia
[3] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
[4] Univ Hosp Frankfurt, Dr Senckenberg Inst Pathol, Frankfurt, Germany
[5] Univ Hosp Zurich, Dept Pathol & Mol Pathol, Zurich, Switzerland
[6] Westmead Inst Med Res, Ctr Canc Res, Westmead, NSW, Australia
[7] Univ Sydney, Fac Med & Hlth, Westmead, NSW, Australia
[8] Westmead Hosp, Dept Gynaecol Oncol, Westmead, NSW, Australia
[9] Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, Zurich, Switzerland
[10] Univ Zurich, Fac Sci, Zurich, Switzerland
[11] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic, Australia
[12] Univ Melbourne, Dept Math & Stat, Melbourne, Vic, Australia
[13] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06510 USA
[14] Yale Univ, Yale Canc Biol Inst, West Haven, CT USA
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
PROTEOGENOMIC CHARACTERIZATION; UNWANTED VARIATION; MASS-SPECTROMETRY; PROTEINS; PEPTIDE; TANDEM;
D O I
10.1038/s41467-020-17641-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with similar to 5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized-A New Paradigm in Large-Scale Computational Research
    Lau, Jessica W.
    Lehnert, Erik
    Sethi, Anurag
    Malhotra, Raunaq
    Kaushik, Gaurav
    Onder, Zeynep
    Groves-Kirkby, Nick
    Mihajlovic, Aleksandar
    DiGiovanna, Jack
    Srdic, Mladen
    Bajcic, Dragan
    Radenkovic, Jelena
    Mladenovic, Vladimir
    Krstanovic, Damir
    Arsenijevic, Vladan
    Klisic, Djordje
    Mitrovic, Milan
    Bogicevic, Igor
    Kural, Deniz
    Davis-Dusenbery, Brandi
    CANCER RESEARCH, 2017, 77 (21) : E3 - E6
  • [32] Using TRIOLE to enable delivery of large-scale industrialized IT services
    Silvester, Marc
    Higgs, Paul
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2007, 43 (03): : 266 - 273
  • [33] Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials
    Zhang, Peiran
    Rufo, Joseph
    Chen, Chuyi
    Xia, Jianping
    Tian, Zhenhua
    Zhang, Liying
    Hao, Nanjing
    Zhong, Zhanwei
    Gu, Yuyang
    Chakrabarty, Krishnendu
    Huang, Tony Jun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [34] Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials
    Peiran Zhang
    Joseph Rufo
    Chuyi Chen
    Jianping Xia
    Zhenhua Tian
    Liying Zhang
    Nanjing Hao
    Zhanwei Zhong
    Yuyang Gu
    Krishnendu Chakrabarty
    Tony Jun Huang
    Nature Communications, 12
  • [36] FAIRly big: A framework for computationally reproducible processing of large-scale data
    Wagner, Adina S.
    Waite, Laura K.
    Wierzba, Malgorzata
    Hoffstaedter, Felix
    Waite, Alexander Q.
    Poldrack, Benjamin
    Eickhoff, Simon B.
    Hanke, Michael
    SCIENTIFIC DATA, 2022, 9 (01)
  • [37] AN APPARATUS FOR REPRODUCIBLE LARGE-SCALE PREPARATION OF POLYACRYLAMIDE GRADIENT TUBE GELS
    BACKHAUS, R
    SCHWIPPERT, W
    WOLF, G
    ANALYTICAL BIOCHEMISTRY, 1984, 136 (02) : 298 - 300
  • [38] Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System
    Passerat-Palmbach, Jonathan
    Reuillon, Romain
    Leclaire, Mathieu
    Makropoulos, Antonios
    Robinson, Emma C.
    Parisot, Sarah
    Rueckert, Daniel
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [39] FAIRly big: A framework for computationally reproducible processing of large-scale data
    Adina S. Wagner
    Laura K. Waite
    Małgorzata Wierzba
    Felix Hoffstaedter
    Alexander Q. Waite
    Benjamin Poldrack
    Simon B. Eickhoff
    Michael Hanke
    Scientific Data, 9