Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: strongly monotone quasi-Newtonian flows

被引:20
|
作者
Congreve, Scott [1 ]
Houston, Paul [1 ]
Sueli, Endre [2 ]
Wihler, Thomas P. [3 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[3] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
hp-version finite element methods; discontinuous Galerkin methods; hp-adaptivity; quasilinear PDEs; quasi-Newtonian flows; POSTERIORI ERROR ESTIMATION;
D O I
10.1093/imanum/drs046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Omega subset of R-d, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.
引用
收藏
页码:1386 / 1415
页数:30
相关论文
共 50 条