Non-equilibrium processes in non-homogeneous fluids under the action of external forces

被引:8
|
作者
Chashechkin, Yu D. [1 ]
Zagumennyi, Ia V. [2 ]
机构
[1] Russian Acad Sci, Inst Problems Mech, Moscow 119526, Russia
[2] Natl Acad Sci Ukraine, Inst Hydromech, UA-03680 Kiev, Ukraine
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
DIFFUSION-DRIVEN FLOW; STRATIFIED FLOW; BOUNDARY; TOPOGRAPHY; GENERATION; CONVECTION; OBSTACLE; CURRENTS; STRIP;
D O I
10.1088/0031-8949/2013/T155/014010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the investigation of stable stratification effects that arise as a result of the combined influence of the external forces and environmental media's non-homogeneity due to the non-uniform distribution of dissolved or suspended matter, temperature, gas bubbles and so on. Such a medium is a thermodynamically non-equilibrium system where non-uniformity of the density flux causes the formation of specific fluid motions that are diffusion-induced flows and internal waves (IW), which are non-existent in a homogeneous fluid. In this paper, we demonstrate numerical calculations on flows' fine structure around impermeable motionless plates with finite length and uniformly moving sloping plates in the interior of a continuously stratified fluid. The flow patterns are investigated both in the direct vicinity of the plate where compact non-wave boundary layer-like components and jet flows are observed and at long distances from the obstacle where sharp horizontal interfaces and groups of IW are revealed. The flows' properties are analyzed as a function of the dimensional parameters of the problem, i.e. the value of stratification, the plate's length and its slope angle to the horizon. The calculated flow patterns are compared with the earlier obtained asymptotic approximation of small and large times and high-resolution schlieren images of stratified flows around both motionless and moving sloping plates in the laboratory.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effect of wetting on the transverse diffusion of non-homogeneous fluids
    Sulbaran, Belky
    Olivares-Rivas, Wilmer
    Villegas, Juan C.
    Colmenares, Pedro J.
    Lopez, Floralba
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2006, 769 (1-3): : 151 - 155
  • [32] KINETIC-THEORY OF NON-EQUILIBRIUM FLUIDS
    COHEN, EGD
    PHYSICA A, 1983, 118 (1-3): : 17 - 42
  • [33] NON-EQUILIBRIUM PROCESSES IN EARLY UNIVERSE
    STEWART, JM
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1969, 145 (03) : 347 - &
  • [34] ON THE THEORY OF NON-EQUILIBRIUM STATISTICAL PROCESSES
    STRATONOVICH, RL
    SOVIET PHYSICS JETP-USSR, 1960, 11 (03): : 598 - 603
  • [35] RADIATIVE PROCESSES AND NON-EQUILIBRIUM THERMODYNAMICS
    CALLIES, U
    HERBERT, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (02): : 242 - 266
  • [36] Non-equilibrium Dynamical Processes in the Galaxy
    Quillen, Alice. C.
    Minchev, Ivan
    HIGHLIGHTS OF ASTRONOMY, VOL 15, 2010, 15 : 178 - +
  • [37] NON-EQUILIBRIUM PROCESSES IN SEPARATION NOZZLES
    FIEBIG, M
    MITRA, NK
    SCHWAN, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (04): : T241 - T244
  • [38] NON-EQUILIBRIUM THERMODYNAMICS OF MEMBRANE PROCESSES
    STAVERMAN, AJ
    TRANSACTIONS OF THE FARADAY SOCIETY, 1952, 48 (02): : 176 - 185
  • [39] NON-EQUILIBRIUM PROCESSES IN LASER MACROKINETICS
    BUNKIN, FV
    KIRICHENKO, NA
    LUKYANCHUK, BS
    VESTNIK AKADEMII NAUK SSSR, 1987, (12) : 58 - 72
  • [40] Depollution processes in non-equilibrium plasmas
    Robert, S
    Genet, F
    Francke, E
    Amouroux, J
    PROGRESS IN PLASMA PROCESSING OF MATERIALS 2001, 2001, : 803 - 810