Receding horizon trajectory optimization with a finite-state value function approximation

被引:13
|
作者
Mettler, Bernard [1 ]
Kong, Zhaodan [1 ]
机构
[1] Univ Minnesota, Dept Aeronaut Engn & Mech, Minneapolis, MN 55455 USA
关键词
D O I
10.1109/ACC.2008.4587087
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a finite-horizon receding horizon trajectory optimization scheme which uses an approximation of the value function to provide cost-to-go (CTG) and associated state information. The value function approximation is computed using a finite-state, motion primitive automaton approximation of the vehicle dynamics. Using an actual value function approximation instead of heuristic CTG allows a tighter integration between the planning and control layers needed for vehicles operating in challenging spatial environments. It also enables a more rigorous use of the receding horizon control framework for autonomous control applications. The paper describes the finite-state value function approximation and its integration into the receding horizon scheme. Simulation examples illustrate the scheme's capabilities and highlight interesting open issues that will need to be addressed to take full advantage of the approach.
引用
收藏
页码:3810 / 3816
页数:7
相关论文
共 50 条
  • [21] On Cyclic Finite-State Approximation of Data-Driven Systems
    Vides, Fredy
    2019 IEEE 39TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXIX), 2019, : 421 - 426
  • [22] A finite-state approximation of optimality theory: The case of Finnish prosody
    Karttunen, Lauri
    ADVANCES IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS, 2006, 4139 : 4 - 15
  • [23] An optimization of finite-state vector quantization for image compression
    Czihó, A
    Solaiman, B
    Loványi, I
    Cazuguel, G
    Roux, C
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2000, 15 (06) : 545 - 558
  • [24] Trajectory Optimization for Voltage Control via Receding Horizon Control and Mixed-Integer Programming
    Shen, Gang
    Ajjarapu, Venkataramana
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 4599 - 4605
  • [25] Generative Modeling of Pedestrian Behavior: A Receding Horizon Optimization-Based Trajectory Planning Approach
    Gupta, Saumya
    Zaki, Mohamed H.
    Vela, Adan
    IEEE ACCESS, 2022, 10 : 81624 - 81641
  • [26] Learning Finite-State Machines with Ant Colony Optimization
    Chivilikhin, Daniil
    Ulyantsev, Vladimir
    SWARM INTELLIGENCE (ANTS 2012), 2012, 7461 : 268 - 275
  • [27] Spectral Learning from a Single Trajectory under Finite-State Policies
    Balle, Borja
    Maillard, Odalric-Ambrym
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [28] DISCRETE-TIME FINITE-HORIZON APPROXIMATION OF INFINITE-HORIZON OPTIMIZATION PROBLEMS WITH STEADY-STATE INVARIANCE
    MERCENIER, J
    MICHEL, P
    ECONOMETRICA, 1994, 62 (03) : 635 - 656
  • [29] Input-to-state stability of robust receding horizon control with an expected value cost
    Goulart, Paul J.
    Kerrigan, Eric C.
    AUTOMATICA, 2008, 44 (04) : 1171 - 1174
  • [30] MINIMAL REPRESENTATION OF SOME FINITE-STATE OPTIMIZATION PROBLEMS.
    Tanaka, Yasuhiro
    Ibaraki, Toshihide
    Hasegawa, Toshiharu
    Systems - Computers - Controls, 1974, 5 (06): : 39 - 46