Stieltjes functions and discrete classical orthogonal polynomials

被引:0
|
作者
Bracciali, Cleonice F. [1 ]
Perez, Teresa E. [2 ]
Pinar, Miguel A. [2 ]
机构
[1] Univ Estadual Paulista, UNESP, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Granada, Dept Matemat Aplicada, Granada 18071, Spain
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2013年 / 32卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Difference equations; Stieltjes functions; Classical orthogonal polynomials of a discrete variable;
D O I
10.1007/s40314-013-0035-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases.
引用
收藏
页码:537 / 547
页数:11
相关论文
共 50 条