Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010

被引:54
|
作者
Li, Xin [1 ]
Ou, Xunmin [1 ,2 ]
Zhang, Xu [1 ,2 ]
Zhang, Qian [1 ,2 ]
Zhang, Xiliang [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Energy Environm & Econ 3E, Beijing 100084, Peoples R China
[2] Tsinghua Univ, CAERC, Beijing 100084, Peoples R China
关键词
Life-cycle analysis; Energy consumption; Greenhouse gas; Secondary energy; China; AUTOMOTIVE FUEL; GHG EMISSIONS; VEHICLE; INVENTORY; LCA; BIODIESEL; GASOLINE; ETHANOL; COAL; CELL;
D O I
10.1016/j.energy.2012.12.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
Life-cycle fossil primary energy consumption (FPEC) and greenhouse gas (GHG) emission intensity of nine types of dominant secondary energy (SE) pathways for China in 2010 are calculated with iterative methods, using the TLCAM (Tsinghua Life-cycle Analysis Model). Three major types of GHG (CO2, CH4 and N2O) are considered for GHG emission intensity, and non-combustion CH4 leakage during the feedstock production sub-stage is included. We found the following. (1) Life-cycle FPEC intensities in units of per MJ SE are obtained and used, in order of magnitude, for: raw coal (recovered only); raw natural gas (NG, recovered and processed only); raw oil (recovered and processed); final coal (finally transported to end-user); final NG (finally transported to end-user); diesel; gasoline; residual oil and electricity. (2) Although their upstream GHG emission intensities are small, their life-cycle intensities are 103.5, 68.3, 81.6, 99.3, 70.0, 101.6, 91.7, 93.5 and 226.4 g CO2,e/MJ SE, respectively, when direct GHG emissions are included. (3) Life-cycle intensities of both FPEC and GHG emissions for SE in China are higher than those in some other countries, because of the relatively low overall efficiency and high percentage of coal in the national energy mix. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [11] Life-Cycle Inventory of Energy Use and Greenhouse Gas Emissions for Two Hydropower Projects in China
    Zhang, Qinfen
    Karney, Bryan
    MacLean, Heather L.
    Feng, Jingchun
    JOURNAL OF INFRASTRUCTURE SYSTEMS, 2007, 13 (04) : 271 - 279
  • [12] Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China
    Ren, Lei
    Zhou, Sheng
    Ou, Xunmin
    ENERGY, 2020, 209
  • [13] Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model
    Peng, Tianduo
    Ou, Xunmin
    Yan, Xiaoyu
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 131 : 699 - 708
  • [14] Life-cycle GHG emission factors of final energy in China
    Jiang Lixue
    Ou Xunmin
    Ma Linwei
    Li Zheng
    Ni Weidou
    GHGT-11, 2013, 37 : 2848 - 2855
  • [15] Life-Cycle Fossil Energy and GHG Emission Intensities of Coal-Based Vehicle Fuels in China
    Ou, Xunmin
    Zhang, Xiliang
    2010 THE SECOND CHINA ENERGY SCIENTIST FORUM, VOL 1-3, 2010, : 1051 - 1056
  • [16] Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China
    Ou, Xunmin
    Yan, Xiaoyu
    Zhang, Xiliang
    Liu, Zhen
    APPLIED ENERGY, 2012, 90 (01) : 218 - 224
  • [17] Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Primary and Recycled Aluminum in China
    Peng, Tianduo
    Ren, Lei
    Du, Ershun
    Ou, Xunmin
    Yan, Xiaoyu
    PROCESSES, 2022, 10 (11)
  • [18] Energy consumption and greenhouse gas emission assessment in the Algerian sector of fertilisers production with life cycle assessment
    Makhlouf, Ali
    Quaranta, Gaetana
    Kardache, Ramdane
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2019, 18 (01) : 16 - 36
  • [19] Energy Consumption and Greenhouse Gas Emission Studies of Jatropha Biodiesel Pathway by Life Cycle Assessment in India
    Kalaivani, K.
    Balasubramanian, N.
    INDIAN CHEMICAL ENGINEER, 2016, 58 (03) : 255 - 267
  • [20] Carsharing's life-cycle impacts on energy use and greenhouse gas emissions
    Chen, T. Donna
    Kockelman, Kara M.
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2016, 47 : 276 - 284