The direct numerical simulation of pipe flow

被引:2
|
作者
Liu Zheng-gang [1 ]
Du Guang-sheng [1 ]
Shao Zhu-feng [1 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Direct Numerical Simulation (DNS); pipe; turbulence intensity; Reynolds stress;
D O I
10.1016/S1001-6058(13)60346-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The conservative difference scheme and the third-order Runge-Kutta scheme in combination with the the Crank-Nicholson scheme are used to directly simulate the flow field in a pipe with the Reynolds number of 2 600. The flow field, including the velocity distribution and the turbulence intensity, is obtained by the direct numerical simulation. From the calculated results, the ratio of the linear average velocity along the ultrasonic propagation path to the profile average velocity on the pipe cross-section is also obtained in an ultrasonic flow meter. It is concluded that the direct numerical simulation method can be used to study the ratio of the profile-linear average velocity at low Reynolds number conditions in the transition region and to improve the measurement accuracy of the ultrasonic flow meter.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 50 条
  • [21] Direct numerical simulation study of turbulent pipe flow with imposed radial rotation
    Ceci, Alessandro
    Pirozzoli, Sergio
    JOURNAL OF FLUID MECHANICS, 2025, 1004
  • [22] Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers
    El Khoury, George K.
    Schlatter, Philipp
    Noorani, Azad
    Fischer, Paul F.
    Brethouwer, Geert
    Johansson, Arne V.
    FLOW TURBULENCE AND COMBUSTION, 2013, 91 (03) : 475 - 495
  • [23] A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow
    Wu, Xiaohua
    Moin, Parviz
    JOURNAL OF FLUID MECHANICS, 2008, 608 : 81 - 112
  • [24] Direct numerical simulation of quasi-equilibrium turbulent puffs in pipe flow
    Priymak, V. G.
    PHYSICS OF FLUIDS, 2018, 30 (06)
  • [25] Direct numerical simulation of transition in pipe flow under the influence of wall disturbances
    Shan, H
    Zhang, Z
    Nieuwstadt, FTM
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1998, 19 (04) : 320 - 325
  • [26] Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method
    Peng, Cheng
    Geneva, Nicholas
    Guo, Zhaoli
    Wang, Lian-Ping
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 357 : 16 - 42
  • [27] Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers
    George K. El Khoury
    Philipp Schlatter
    Azad Noorani
    Paul F. Fischer
    Geert Brethouwer
    Arne V. Johansson
    Flow, Turbulence and Combustion, 2013, 91 : 475 - 495
  • [28] Modeling of a passive scalar in a turbulent pipe flow using a direct numerical simulation
    de Hoogh, J.
    Veenman, M. P. B.
    Kuerten, J. G. M.
    Direct and Large-Eddy Simulation V, Proceedings, 2004, 9 : 315 - 322
  • [29] Direct numerical simulation of turbulent concentric annular pipe flow - Part 1: Flow field
    Chung, SY
    Rhee, GH
    Sung, HJ
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2002, 23 (04) : 426 - 440
  • [30] Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow
    Marchioli, C
    Giusti, A
    Salvetti, MV
    Soldati, A
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (06) : 1017 - 1038