The direct numerical simulation of pipe flow

被引:2
|
作者
Liu Zheng-gang [1 ]
Du Guang-sheng [1 ]
Shao Zhu-feng [1 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Direct Numerical Simulation (DNS); pipe; turbulence intensity; Reynolds stress;
D O I
10.1016/S1001-6058(13)60346-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The conservative difference scheme and the third-order Runge-Kutta scheme in combination with the the Crank-Nicholson scheme are used to directly simulate the flow field in a pipe with the Reynolds number of 2 600. The flow field, including the velocity distribution and the turbulence intensity, is obtained by the direct numerical simulation. From the calculated results, the ratio of the linear average velocity along the ultrasonic propagation path to the profile average velocity on the pipe cross-section is also obtained in an ultrasonic flow meter. It is concluded that the direct numerical simulation method can be used to study the ratio of the profile-linear average velocity at low Reynolds number conditions in the transition region and to improve the measurement accuracy of the ultrasonic flow meter.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 50 条
  • [1] The direct numerical simulation of pipe flow
    LIU Zheng-gang
    DU Guang-sheng
    SHAO Zhu-feng
    JournalofHydrodynamics, 2013, 25 (01) : 125 - 130
  • [2] The direct numerical simulation of pipe flow
    Zheng-gang Liu
    Guang-sheng Du
    Zhu-feng Shao
    Journal of Hydrodynamics, 2013, 25 : 125 - 130
  • [3] Direct numerical simulation of the flow in a pipe bend
    Boersma, BJ
    Nieuwstadt, FTM
    ENGINEERING TURBULENCE MODELLING AND EXPERIMENTS 3, 1996, : 209 - 218
  • [4] Direct numerical simulation of the turbulent flow in an elliptical pipe
    Voronova T.V.
    Nikitin N.V.
    Computational Mathematics and Mathematical Physics, 2006, 46 (8) : 1378 - 1386
  • [5] Direct numerical simulation of the motion of particles in rotating pipe flow
    van Esch, B. P. M.
    Kuerten, J. G. M.
    JOURNAL OF TURBULENCE, 2008, 9 (04): : 1 - 17
  • [6] Direct numerical simulation of a turbulent 90° bend pipe flow
    Wang, Zhixin
    Orlu, Ramis
    Schlatter, Philipp
    Chung, Yongmann M.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2018, 73 : 199 - 208
  • [7] Direct numerical simulation of mixed convection in horizontal pipe flow
    Piller, M.
    COMPUTATIONAL FLUID DYNAMICS 2004, PROCEEDINGS, 2006, : 857 - 858
  • [8] DIRECT NUMERICAL SIMULATION OF THE FLOW OVER A SPHERICAL BUBBLE IN A TURBULENT PIPE FLOW
    Jofre, L.
    Balcazar, N.
    Lehmkuhl, O.
    Borrell, R.
    Castro, J.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 5333 - 5343
  • [9] Direct numerical simulation of transitional flow in a finite length curved pipe
    Hashemi, Amirreza
    Fischer, Paul F.
    Loth, Francis
    JOURNAL OF TURBULENCE, 2018, 19 (08): : 664 - 682
  • [10] Direct numerical simulation of the turbulent flow in a pipe with annular cross section
    Quadrio, M
    Luchini, P
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2002, 21 (04) : 413 - 427