Effect of quantum fluctuations on the coloring of random graphs

被引:1
|
作者
Bapst, Victor [1 ]
Semerjian, Guilhem
Zamponi, Francesco
机构
[1] CNRS, Unite Mixte Rech UMR 8549, LPTENS, F-75231 Paris 05, France
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 04期
关键词
SPIN-GLASS MODEL; GIBBS-STATES; POTTS GLASS; TRANSITION; COMPLEXITY; MECHANICS; ENTROPY;
D O I
10.1103/PhysRevA.87.042322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a study of the coloring problem (antiferromagnetic Potts model) of random regular graphs, submitted to quantum fluctuations induced by a transverse field, using the quantum cavity method and quantum Monte Carlo simulations. We determine the order of the quantum phase transition encountered at low temperature as a function of the transverse field and discuss the structure of the quantum spin-glass phase. In particular, we conclude that the quantum adiabatic algorithm would fail to solve efficiently typical instances of these problems because of avoided level crossings within the quantum spin-glass phase, caused by a competition between energetic and entropic effects. DOI: 10.1103/PhysRevA.87.042322
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Coloring complete bipartite graphs from random lists
    Krivelevich, Michael
    Nachmias, Asaf
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (04) : 436 - 449
  • [32] Coloring graphs from random lists of size 2
    Casselgren, Carl Johan
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 168 - 181
  • [33] ONLINE VERTEX-COLORING GAMES IN RANDOM GRAPHS
    Marciniszyn, Martin
    Spoehel, Reto
    COMBINATORICA, 2010, 30 (01) : 105 - 123
  • [34] Coloring sparse random graphs in polynomial average time
    Subramanian, C.R.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2000, 1879 : 415 - 426
  • [35] Circular coloring of random graphs: statistical physics investigation
    Schmidt, Christian
    Guenther, Nils-Eric
    Zdeborova, Lenka
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [36] Scaling laws for maximum coloring of random geometric graphs
    Borst, Sem
    Bradonjic, Milan
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 427 - 437
  • [37] Coloring graphs from random lists of fixed size
    Casselgren, Carl Johan
    RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (03) : 317 - 327
  • [38] Polynomial iterative algorithms for coloring and analyzing random graphs
    Braunstein, A
    Mulet, R
    Pagnani, A
    Weigt, M
    Zecchina, R
    PHYSICAL REVIEW E, 2003, 68 (03)
  • [39] PROBABILISTIC BEHAVIOR OF A NAIEVE COLORING ALGORITHM ON RANDOM GRAPHS
    KARP, R
    MATULA, DW
    OPERATIONS RESEARCH, 1975, 23 : B264 - B264
  • [40] Online vertex-coloring games in random graphs
    Martin Marciniszyn
    Reto Spöhel
    Combinatorica, 2010, 30 : 105 - 123