Dynamic positron emission tomography data-driven analysis using sparse Bayesian learning

被引:24
|
作者
Peng, Jyh-Ying [1 ,2 ]
Aston, John A. D. [1 ,3 ]
Gunn, Roger N. [4 ,5 ]
Liou, Cheng-Yuan [2 ]
Ashburner, John [6 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[3] Univ Warwick, Ctr Res Stat Methodol, Coventry CV4 7AL, W Midlands, England
[4] GlaxoSmithKline, Clin Imaging Ctr, London W12 0NN, England
[5] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[6] UCL, Inst Neurol, Wellcome Ctr Neuroimaging, London WC1N 3BG, England
关键词
basis pursuit; compartmental models; DEPICT; nonnegative least squares; time course analysis;
D O I
10.1109/TMI.2008.922185
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method is presented tor the analysis of dynamic positron emission tomography (PET) data using sparse Bayesian learning. Parameters are estimated in a compartmental framework using an over-complete exponential basis set and sparse Bayesian learning. The technique is applicable to analyses requiring either a plasma or reference tissue input function and produces estimates of the system's macro-parameters and model order. In addition, the Bayesian approach returns the posterior distribution which allows for some characterisation of the error component. The method is applied to the estimation of parametric images of neuroreceptor radioligand studies.
引用
收藏
页码:1356 / 1369
页数:14
相关论文
共 50 条
  • [21] Data-driven predictions of shield attitudes using Bayesian machine learning
    Wang, Lai
    Pan, Qiujing
    Wang, Shuying
    COMPUTERS AND GEOTECHNICS, 2024, 166
  • [22] Data-driven approach for dynamic homogenization using meta learning
    Shah, Aarohi
    Rimoli, Julian J.
    Computer Methods in Applied Mechanics and Engineering, 2022, 401
  • [23] Data-driven approach for dynamic homogenization using meta learning
    Shah, Aarohi
    Rimoli, Julian J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 401
  • [24] A Bayesian Approach for Data-Driven Dynamic Equation Discovery
    North, Joshua S.
    Wikle, Christopher K.
    Schliep, Erin M.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (04) : 728 - 747
  • [25] A Bayesian Approach for Data-Driven Dynamic Equation Discovery
    Joshua S. North
    Christopher K. Wikle
    Erin M. Schliep
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 728 - 747
  • [26] Data-driven geotechnical site recognition using machine learning and sparse representation
    Guan, Zheng
    Wang, Yu
    Phoon, Kok-Kwang
    ENGINEERING GEOLOGY, 2025, 346
  • [27] Dictionary learning for data recovery in positron emission tomography
    Valiollahzadeh, SeyyedMajid
    Clark, John W., Jr.
    Mawlawi, Osama
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (15): : 5853 - 5871
  • [28] SAR Tomography Imaging Using Sparse Bayesian Learning
    Min, Rui
    Hu, Yating
    Pi, Yiming
    Cao, Zongjie
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2012, E95B (01) : 354 - 357
  • [29] Bayesian uncertainty quantification for data-driven equation learning
    Martina-Perez, Simon
    Simpson, Matthew J.
    Baker, Ruth E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [30] A Review of Machine Learning Approaches for Brain Positron Emission Tomography Data Analysis
    Xu, Ke
    Kang, Hakmook
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 58 (04) : 203 - 212