Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen-Macaulay case

被引:39
|
作者
Boij, Mats [1 ]
Soderberg, Jonas [1 ]
机构
[1] KTH, Dept Math, SE-10044 Stockholm, Sweden
关键词
graded modules; Betti numbers; multiplicity conjecture; BOUNDS; PURE;
D O I
10.2140/ant.2012.6.437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use results of Eisenbud and Schreyer to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination of Betti diagrams of modules with a pure resolution. This implies the multiplicity conjecture of Herzog, Huneke, and Srinivasan for modules that are not necessarily Cohen-Macaulay and also implies a generalized version of these inequalities. We also give a combinatorial proof of the convexity of the simplicial fan spanned by pure diagrams.
引用
收藏
页码:437 / 454
页数:18
相关论文
共 50 条
  • [31] Extremal Betti Numbers of Some Cohen-Macaulay Binomial Edge Ideals
    Mascia, Carla
    Rinaldo, Giancarlo
    ALGEBRA COLLOQUIUM, 2021, 28 (03) : 415 - 430
  • [32] A sub-functor for Ext and Cohen-Macaulay associated graded modules with bounded multiplicity-II
    Mishra, Ankit
    Puthenpurakal, Tony J.
    GLASGOW MATHEMATICAL JOURNAL, 2025, 67 (01) : 86 - 106
  • [33] Face numbers of sequentially Cohen-Macaulay complexes and Betti numbers of componentwise linear ideals
    Adiprasito, Karim A.
    Bjorner, Anders
    Goodarzi, Afshin
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (12) : 3851 - 3865
  • [34] A MULTIPLICITY BOUND FOR GRADED RINGS AND A CRITERION FOR THE COHEN-MACAULAY PROPERTY
    Huneke, Craig
    Mantero, Paolo
    Mccullough, Jason
    Seceleanu, Alexandra
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) : 2365 - 2377
  • [35] Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants
    Campbell, HEA
    Geramita, AV
    Hughes, IP
    Shank, RJ
    Wehlau, DL
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (02): : 155 - 161
  • [36] DUAL BASS NUMBERS AND CO-COHEN MACAULAY MODULES
    Li, Lingguang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 499 - 505
  • [37] Non-Cohen-Macaulay projective monomial curves with positive h-vector
    de Quehen, VE
    Roberts, LG
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (02): : 203 - 210
  • [38] NON-COHEN-MACAULAY SYMBOLIC BLOW-UPS FOR SPACE MONOMIAL CURVES
    MORIMOTO, M
    GOTO, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (02) : 305 - 311
  • [39] On associated graded modules of maximal Cohen-Macaulay modules over hypersurface rings
    Mishra, Ankit
    Puthenpurakal, Tony J.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [40] Maximal Betti numbers of Cohen-Macaulay complexes with a given f-vector
    Murai, Satoshi
    Hibi, Takayuki
    ARCHIV DER MATHEMATIK, 2007, 88 (06) : 507 - 512