Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm

被引:40
|
作者
Kuzhuget, Andrey V. [2 ]
Beilina, Larisa [3 ,4 ]
Klibanov, Michael V. [1 ]
Sullivan, Anders [5 ]
Lam Nguyen [5 ]
Fiddy, Michael A. [6 ]
机构
[1] Univ N Carolina, Dept Math & Stat, UNCC ChalmersGU Team, Charlotte, NC 28223 USA
[2] Morgan Stanley & Co Inc, UNCC ChalmersGU Team, New York, NY 10036 USA
[3] Chalmers Univ Technol, Dept Math Sci, UNCC ChalmersGU Team, SE-42196 Gothenburg, Sweden
[4] Gothenburg Univ, UNCC ChalmersGU Team, SE-42196 Gothenburg, Sweden
[5] USA, Res Lab, ARL Team, Adelphy, MD 20783 USA
[6] Univ N Carolina, Optoelect Ctr, UNCC ChalmersGU Team, Charlotte, NC 28223 USA
基金
瑞典研究理事会;
关键词
NUMERICAL-METHOD; SCATTERING PROBLEM; RECONSTRUCTION;
D O I
10.1088/0266-5611/28/9/095007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approximately globally convergent numerical method for a 1D coefficient inverse problem for a hyperbolic PDE is applied to image dielectric constants of targets from blind experimental data. The data were collected in the field by the Forward Looking Radar of the US Army Research Laboratory. A posteriori analysis has revealed that computed and tabulated values of dielectric constants are in good agreement. Convergence analysis is presented.
引用
收藏
页数:33
相关论文
共 29 条
  • [21] Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation
    Beilina, Larisa
    Nguyen Trung Thanh
    Klibanov, Michael V.
    Fiddy, Michael A.
    INVERSE PROBLEMS, 2014, 30 (02)
  • [22] A GLOBALLY CONVERGENT NUMERICAL METHOD FOR A 3D COEFFICIENT INVERSE PROBLEM WITH A SINGLE MEASUREMENT OF MULTI-FREQUENCY DATA
    Klibanov, Michael V.
    Dinh-Liem Nguyen
    Nguyen, Loc H.
    Liu, Hui
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (02) : 493 - 523
  • [23] Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method
    Dinh-Liem Nguyen
    Klibanov, Michael, V
    Nguyen, Loc H.
    Fiddy, Michael A.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2018, 26 (04): : 501 - 522
  • [24] Inverse electromagnetic obstacle scattering problems with multi-frequency sparse backscattering far field data
    Arens, Tilo
    Ji, Xia
    Liu, Xiaodong
    INVERSE PROBLEMS, 2020, 36 (10)
  • [25] GLOBALLY STRICTLY CONVEX COST FUNCTIONAL FOR A 1-D INVERSE MEDIUM SCATTERING PROBLEM WITH EXPERIMENTAL DATA
    Klibanov, Michael V.
    Kolesov, Aleksandr E.
    Lam Nguyen
    Sullivan, Anders
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (05) : 1733 - 1755
  • [26] Reconstruction of flow field with missing experimental data of a circular cylinder via machine learning algorithm
    Aksoy, Muharrem Hilmi
    Goktepeli, Ilker
    Ispir, Murat
    Cakan, Abdullah
    PHYSICS OF FLUIDS, 2023, 35 (11)
  • [27] Far-Field Pattern Reconstruction from Near-Field Data Collected via a Nonconventional Plane-Rectangular Scanning: Experimental Testing
    D'Agostino, Francesco
    De Colibus, Ilaria
    Ferrara, Flaminio
    Gennarelli, Claudio
    Guerriero, Rocco
    Migliozzi, Massimo
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2014, 2014
  • [28] Imaging of Wide-angle Near-field Inverse Synthetic Aperture Radar Data Using Back-projection Algorithm
    Demirci, Sevket
    Ustun, Deniz
    Ozdemir, Caner
    PIERS 2011 MARRAKESH: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, : 554 - 557
  • [29] Parameter estimation through inverse modelling and comparison of four leaching models using experimental data from two contrasting pesticide field trials in New Zealand
    Sarmah, A. K.
    Close, M. E.
    Dann, R.
    Pang, L.
    Green, S. R.
    AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2006, 44 (06): : 581 - 597