PC-based process distribution to solve iterative Monte Carlo Simulations in physical dosimetry

被引:0
|
作者
Leal, A [1 ]
Sánchez-Doblado, F [1 ]
Perucha, M [1 ]
Rincón, M [1 ]
Arrans, R [1 ]
Bernal, C [1 ]
Carrasco, E [1 ]
机构
[1] Univ Seville, Fac Med, Dpto Fisiol & Fis Med, Seville, Spain
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A distribution model to simulate physical dosimetry measurements with Monte Carlo (MC) techniques has been developed. This approach is indicated to solve the simulations where there are continuous changes of measurement conditions (and hence of the input parameters) such as a TPR curve or the estimation of the resolution limit of an optical densitometer in the case of small field profiles. As a comparison, a high resolution scan for narrow beams with no iterative process is presented. The model has been installed on a network PCs without any resident software. The only requirement for these PCs has been a small and temporal Linux partition in the hard disks and to be connecting by the net with our server PC.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [31] Direct Monte Carlo simulations for accurate diagnostic and therapeutic dosimetry calculations
    Denis-Bacelar, A. M.
    Fenwick, A. J.
    Ferreira, K. M.
    Robinson, A. P.
    Wevrett, J. L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S363 - S364
  • [32] Synchrotron stereotactic radiotherapy:: dosimetry by Fricke gel and Monte Carlo simulations
    Boudou, C
    Biston, MC
    Corde, S
    Adam, JF
    Ferrero, C
    Estève, F
    Elleaume, H
    PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (22): : 5135 - 5144
  • [33] PC-based configurable process control simulator
    Taylor, M.A.
    Yee, H.
    The International journal of applied engineering education, 1989, 5 (02): : 199 - 207
  • [34] Validation of a SUV-based correction for internal exposure dosimetry using Monte Carlo simulations
    Dormish, Phil
    Chen, Clara
    Maass-Moreno, Roberto
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55
  • [35] Iterative optimisation of Monte Carlo detector models using measurements and simulations
    Marzocchi, O.
    Leone, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 779 : 47 - 51
  • [36] Evidence for the validity of PC-based simulations in studying aircrew coordination
    Jentsch, F
    Bowers, CA
    INTERNATIONAL JOURNAL OF AVIATION PSYCHOLOGY, 1998, 8 (03): : 243 - 260
  • [37] S factors for small animal dosimetry based on Monte Carlo simulations of an anatomical realistic mouse phantom
    Larsson, E.
    Strand, S.
    Ljungberg, M.
    Jonsson, B.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 : S173 - S173
  • [38] Step-Size Dependence of Monte Carlo Simulations for Cherenkov Emission (CE)-Based Dosimetry Calculations
    Zlateva, Y.
    Muir, B.
    El Naqa, I.
    Seuntjens, J.
    MEDICAL PHYSICS, 2020, 47 (06) : E852 - E852
  • [39] Lu-177-PSMA dosimetry using image-based TOPAS Monte Carlo simulations
    Lei, Bowen
    Yang, Fan
    Balaji, Vibha
    Luo, Jie
    Onecha, Victor Valladolid
    Heidari, Pedram
    Li, Quanzheng
    Bertolet, Alejandro
    Dutta, Joyita
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [40] X-ray dosimetry: comparing Monte Carlo simulations and experimental data
    Stichelbaut, F
    Bol, JL
    Lundhal, B
    Martin, F
    Rose, G
    Schlecht, J
    Smith, R
    RADIATION PHYSICS AND CHEMISTRY, 2004, 71 (1-2) : 345 - 349