A New Type of q-Szasz-Mirakjan Operators

被引:0
|
作者
Chirila, Adina [1 ]
机构
[1] Transilvania Univ Brasov, Dept Math & Comp Sci, 29 Eroilor Blvd, Brasov 500036, Romania
关键词
Linear positive operators; q-Szasz-Mirakjan operators; Voronovskaja theorem;
D O I
10.2298/FIL1718617C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new q-Szasz-Mirakjan operator based on a new q-exponential function. We derive various formulae for the moments, prove the uniform convergence of the sequence of operators to the identity operator on compact intervals and show a Voronovskaja type result.
引用
收藏
页码:5617 / 5628
页数:12
相关论文
共 50 条
  • [21] Generalized Szasz-Mirakjan type operators via q-calculus and approximation properties
    Ahasan, Mohd
    Mursaleen, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 371
  • [22] On Stancu-Type Generalization of Modified (p, q)-Szasz-Mirakjan-Kantorovich Operators
    Hu, Yong-Mo
    Cheng, Wen-Tao
    Gui, Chun-Yan
    Zhang, Wen-Hui
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [23] (p, q)-Generalization of Szasz-Mirakjan operators and their approximation properties
    Kara, Mustafa
    Mahmudov, Nazim, I
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [24] Approximation Properties of (p, q)-Szasz-Mirakjan-Durrmeyer Operators
    Lin, Zhi-Peng
    Cheng, Wen-Tao
    Xu, Xiao-Wei
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [25] THE VORONOVSKAJA TYPE THEOREM FOR AN EXTENSION OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu
    Barbosu, Dan
    Miclaus, Dan
    DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 107 - 115
  • [26] THE VORONOVSKAJA TYPE THEOREM FOR THE SZASZ-MIRAKJAN-KANTOROVICH OPERATORS
    Miclaus, Dan
    JOURNAL OF SCIENCE AND ARTS, 2010, (02): : 257 - 260
  • [27] Local approximation results for Szasz-Mirakjan type operators
    Oezarslan, Mehmet Ali
    Duman, Oktay
    ARCHIV DER MATHEMATIK, 2008, 90 (02) : 144 - 149
  • [28] APPROXIMATION BY GENERALIZED SZASZ-MIRAKJAN-KANTOROVICH TYPE OPERATORS
    Qasim, Mohd
    Mursaleen, M.
    Abbas, Zaheer
    Khan, Asif
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2022, 111 (125): : 89 - 99
  • [29] Dunkl analogue of Szasz-Mirakjan operators of blending type
    Deshwal, Sheetal
    Agrawal, P. N.
    Araci, Serkan
    OPEN MATHEMATICS, 2018, 16 : 1344 - 1356
  • [30] An Extension of the Szasz-Mirakjan Operators
    Mortici, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 137 - 144