Cooperative Unscented Kalman Filter with Bank of Scaling Parameter Values

被引:0
|
作者
Dunik, J. [1 ]
Straka, O. [1 ]
Hanebeck, U. D. [2 ]
机构
[1] Univ West Bohemia, Dept Cybernet, Univ 8, Plzen 30614, Czech Republic
[2] Karlsruhe Inst Technol, Inst Anthropomat & Robot, Adenauerring 2, D-76131 Karlsruhe, Germany
关键词
Nonlinear filtering; Gaussian estimators; Bayesian relations;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the Bayesian state estimation of the nonlinear stochastic dynamic systems. The stress is laid on Gaussian unscented Kalnian filter (UKF) and, in particular, on a setting of its scaling parameter, which significantly affects the UKF estimation performance. Compared to the standard UKF design, where one scaling parameter per a time instant is selected, the proposed cooperative UKF combines estimates of the set of UKFs each designed with different value of the scaling parameter. The cooperative UKF reformulates the UKF scaling parameter selection task as the multiple model approach, which allows to extract more information from the measurement to provide estimates of better quality as indicated by the numerical simulations.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [31] Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation
    Riva, Mauro Hernan
    Dagen, Matthias
    Ortmaier, Tobias
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4513 - 4519
  • [32] Parameter estimation and control for a neural mass model based on the unscented Kalman filter
    Liu, Xian
    Gao, Qing
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [33] Unscented Kalman filter with performance recovery strategy for parameter estimation of isolation structures
    He, Xinhao
    Unjoh, Shigeki
    Li, Dan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (12):
  • [34] Simultaneous Identification of Structural Parameter and External Excitation with an Improved Unscented Kalman Filter
    Ding, Y.
    Zhao, B. Y.
    Wu, B.
    Zhang, X. C.
    Guo, L. N.
    ADVANCES IN STRUCTURAL ENGINEERING, 2015, 18 (11) : 1981 - 1998
  • [35] The Unscented Kalman Filter for Nonlinear Parameter Identification of Adaptive Cruise Control Systems
    Ampountolas K.
    IEEE Transactions on Intelligent Vehicles, 2023, 8 (08): : 4094 - 4104
  • [36] The square-root unscented Kalman filter for state and parameter-estimation
    van der Merwe, R
    Wan, EA
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3461 - 3464
  • [37] USV Parameter Estimation: Adaptive Unscented Kalman Filter-Based Approach
    Shen, Han
    Wen, Guanghui
    Lv, Yuezu
    Zhou, Jun
    Wang, Linan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7751 - 7761
  • [38] Recursive parameter estimation of thermostatically controlled loads via unscented Kalman filter
    Burger, Eric M.
    Moura, Scott J.
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2016, 8 : 12 - 25
  • [39] Joint Unscented Kalman Filter for State and Parameter Estimation in Managed Pressure Drilling
    Mahdianfar, Hessam
    Pavlov, Alexey
    Aamo, Ole Morten
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1645 - 1650
  • [40] SOC Estimation with an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
    Guo, Xiangwei
    Xu, Xiaozhuo
    Geng, Jiahao
    Hua, Xian
    Gao, Yan
    Liu, Zhen
    APPLIED SCIENCES-BASEL, 2019, 9 (19):