Cooperative Unscented Kalman Filter with Bank of Scaling Parameter Values

被引:0
|
作者
Dunik, J. [1 ]
Straka, O. [1 ]
Hanebeck, U. D. [2 ]
机构
[1] Univ West Bohemia, Dept Cybernet, Univ 8, Plzen 30614, Czech Republic
[2] Karlsruhe Inst Technol, Inst Anthropomat & Robot, Adenauerring 2, D-76131 Karlsruhe, Germany
关键词
Nonlinear filtering; Gaussian estimators; Bayesian relations;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the Bayesian state estimation of the nonlinear stochastic dynamic systems. The stress is laid on Gaussian unscented Kalnian filter (UKF) and, in particular, on a setting of its scaling parameter, which significantly affects the UKF estimation performance. Compared to the standard UKF design, where one scaling parameter per a time instant is selected, the proposed cooperative UKF combines estimates of the set of UKFs each designed with different value of the scaling parameter. The cooperative UKF reformulates the UKF scaling parameter selection task as the multiple model approach, which allows to extract more information from the measurement to provide estimates of better quality as indicated by the numerical simulations.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [1] Unscented Kalman filter with advanced adaptation of scaling parameter
    Straka, Ondrej
    Dunik, Jindrich
    Simandl, Miroslav
    AUTOMATICA, 2014, 50 (10) : 2657 - 2664
  • [2] Adaptively Tuning the Scaling Parameter of the Unscented Kalman Filter
    Scardua, Leonardo Azevedo
    da Cruz, Jose Jaime
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 429 - 438
  • [3] Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter
    Dunik, Jindrich
    Simandl, Miroslav
    Straka, Ondrej
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) : 2411 - 2416
  • [4] A Self-adaptive Scaling Parameter Selection Algorithm for the Unscented Kalman Filter
    Nie, Yongfang
    Zhang, Tao
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 86 - 90
  • [5] Lung model parameter estimation by unscented Kalman filter
    Saatci, Esra
    Akan, Aydin
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2556 - +
  • [6] Modification of unscented Kalman filter using a set of scaling parameters
    Zarei-Jalalabadi, Mahboubeh
    Malaek, Seyed Mohammad-Bagher
    IET SIGNAL PROCESSING, 2018, 12 (04) : 471 - 480
  • [7] Scaling parameters selection principle for the scaled unscented Kalman filter
    NIE Yongfang
    ZHANG Tao
    JournalofSystemsEngineeringandElectronics, 2018, 29 (03) : 601 - 610
  • [8] Scaling parameters selection principle for the scaled unscented Kalman filter
    Nie Yongfang
    Zhang Tao
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2018, 29 (03) : 601 - 610
  • [9] Sensitivity reduction of unscented Kalman filter about parameter uncertainties
    Shen, Haijun
    Karlgaard, Christopher D.
    IET RADAR SONAR AND NAVIGATION, 2015, 9 (04): : 374 - 383
  • [10] Application of Differential Evolution to the Parameter Optimization of the Unscented Kalman Filter
    Jin, Yao
    COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2012, 316 : 341 - +