Autonomous Unmanned Aerial Vehicle (UAV) landing in windy conditions with MAP-Elites

被引:1
|
作者
Adibi, Sierra A. [1 ]
Forer, Scott [2 ]
Fries, Jeremy [2 ]
Yliniemi, Logan [2 ]
机构
[1] Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Box 352400, Seattle, WA 98195 USA
[2] Univ Nevada, Dept Mech Engn, 1664 N Virginia St, Reno, NV 89557 USA
来源
基金
美国国家航空航天局;
关键词
ERROR;
D O I
10.1017/S0269888917000121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the recent increase in the use of Unmanned Aerial Vehicles (UAVs) comes a surge of inexperienced aviators who may not have the requisite skills to react appropriately if weather conditions quickly change while their aircraft are in flight. This creates a dangerous situation, in which the pilot cannot safely land the vehicle. In this work we examine the use of the MAP-Elites algorithm to search for sets of weights for use in an artificial neural network. This neural network directly controls the thrust and pitching torque of a simulated 3-degree of freedom (2 linear, 1 rotational) fixed-wing UAV, with the goal of obtaining a smooth landing profile. We then examine the use of the same algorithm in high-wind conditions, with gusts up to 30 knots. Our results show that MAP-Elites is an effective method for searching for control policies, and by evolving two separate controllers and switching which controller is active when the UAV is near-ground level, we can produce a wider variety of phenotypic behaviors. The best controllers achieved landing at a vertical speed of <1 m s(-1) and at an angle of approach of <1 degrees degree.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Autonomous landing of an unmanned aerial vehicle
    Amaral, T. G.
    Pires, V. F.
    Crisotomo, M. M.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 530 - +
  • [2] Autonomous Landing of an Unmanned Aerial Vehicle on an Autonomous Marine Vehicle
    Venugopalan, T. K.
    Taher, Tawfiq
    Barbastathis, George
    2012 OCEANS, 2012,
  • [3] Autonomous landing on a moving vehicle with an unmanned aerial vehicle
    Tomas, Baca
    Stepan, Petr
    Vojtech, Spurny
    Hert, Daniel
    Penicka, Robert
    Saska, Martin
    Thomas, Justin
    Loianno, Giuseppe
    Kumar, Vijay
    JOURNAL OF FIELD ROBOTICS, 2019, 36 (05) : 874 - 891
  • [4] Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle
    Baca, Tomas
    Stepan, Petr
    Saska, Martin
    2017 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2017,
  • [5] Vision based autonomous landing of an unmanned aerial vehicle
    Anitha, G.
    Kumar, R. N. Gireesh
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 2250 - 2256
  • [6] Vision-based autonomous landing of an unmanned aerial vehicle
    Saripalli, S
    Montgomery, JF
    Sukhatme, GS
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 2799 - 2804
  • [7] Vision assisted autonomous landing of an unmanned aerial vehicle.
    Chitrakaran, Vilas K.
    Dawson, Darren M.
    Chen, Jian
    Feemster, Matthew
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 1465 - 1470
  • [8] Simulation collision of unmanned aerial vehicle (UAV) hard-landing
    Chen, Xiaomao
    Liang, Shibo
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41 (SUPPL. 1): : 75 - 78
  • [9] Autonomous tracking and landing of an unmanned aerial vehicle on a ground vehicle in rough terrain
    Aoki, Nobuaki
    Ishigami, Genya
    ADVANCED ROBOTICS, 2023, 37 (05) : 344 - 355
  • [10] VSDRL: A robust and accurate unmanned aerial vehicle autonomous landing scheme
    Chen, Dechao
    Shi, Chentong
    Pan, Xiaofeng
    Jin, Jie
    Li, Shuai
    IET CONTROL THEORY AND APPLICATIONS, 2025, 19 (01):