An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materials

被引:25
|
作者
Vinai, G. [1 ]
Motti, F. [1 ,2 ]
Petrov, A. Yu [1 ]
Polewczyk, V [1 ]
Bonanni, V [1 ,2 ]
Edla, R. [1 ]
Gobaut, B. [3 ]
Fujii, J. [1 ]
Suran, F. [1 ]
Benedetti, D. [1 ]
Salvador, F. [1 ]
Fondacaro, A. [1 ]
Rossi, G. [1 ,2 ]
Panaccione, G. [1 ]
Davidson, B. A. [1 ,4 ]
Torelli, P. [1 ]
机构
[1] CNR, Lab TASC, Ist Off Mat IOM, Area Sci Pk,SS 14 Km 163-5, I-34149 Trieste, Italy
[2] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy
[3] Elettra Sincrotrone Trieste SCpA, Area Sci Pk, I-34149 Trieste, Italy
[4] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2020年 / 91卷 / 08期
基金
欧盟地平线“2020”;
关键词
OXIDE; TRANSITION; FILMS;
D O I
10.1063/5.0005302
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Here, we present an integrated ultra-high vacuum apparatus-named MBE-Cluster -dedicated to the growth and in situ structural, spectroscopic, and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g., manganites, and deposition of the patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction, low-energy electron diffraction, Auger electron spectroscopy, x-ray photoemission spectroscopy, and azimuthal longitudinal magneto-optic Kerr effect. The temperature can be controlled in the range from 5 K to 580 K, with the possibility of application of magnetic fields H up to +/- 7 kOe and electric fields E for voltages up to +/- 500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator facility for time-resolved spectroscopy.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Ultra-High Vacuum Processing and Characterization of Chemically Functionalized Graphene
    Wang, Qing Hua
    Hersam, Mark C.
    GRAPHENE, GE/III-V, AND EMERGING MATERIALS FOR POST-CMOS APPLICATIONS 2, 2010, 28 (05): : 95 - 98
  • [22] Electrochemistry in ultra-high vacuum: The fully transferrable ultra-high vacuum compatible electrochemical cell
    Kerger, P.
    Vogel, D.
    Rohwerder, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (11):
  • [23] EPITAXIAL GROWTH OF CUBIC ZNS BY EVAPORATION IN ULTRA-HIGH VACUUM
    UNVALA, BA
    WOODCOCK, JM
    HOLT, DB
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1968, 1 (01) : 11 - &
  • [24] Ultra-high vacuum compatibility measurements of materials for the CHICSi detector system
    Rouki, C
    Westerberg, L
    PHYSICA SCRIPTA, 2003, T104 : 107 - 108
  • [25] In situ ultra-high vacuum transmission electron microscopy studies of nanocrystalline copper
    Olynick, DL
    Gibson, JM
    Averback, RS
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 204 (1-2): : 54 - 58
  • [26] A CRYOPUMP FOR OBTAINING ULTRA-HIGH VACUUM
    BAEVA, NN
    DANILOVA, NP
    SHALNIKO.AI
    CRYOGENICS, 1968, 8 (01) : 49 - &
  • [27] BAKEABLE ULTRA-HIGH VACUUM SYSTEMS
    HOLLAND, L
    JOURNAL OF SCIENTIFIC INSTRUMENTS, 1962, 39 (05): : 247 - &
  • [28] ELECTRONIC ULTRA-HIGH VACUUM PUMP
    HALL, LD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1958, 29 (05): : 367 - 370
  • [29] CSRm Ultra-High Vacuum System
    杨晓天
    蒙峻
    张军辉
    张喜平
    胡振军
    侯生军
    张新俊
    郝斌干
    吴慧敏
    Plasma Science & Technology, 2005, (05) : 39 - 42
  • [30] CSRm ultra-high vacuum system
    Yang, XT
    Jun, M
    Zhang, JH
    Zhang, XP
    Hu, ZJ
    Hou, SJ
    Zhang, XJ
    Hao, BG
    Wu, HM
    PLASMA SCIENCE & TECHNOLOGY, 2005, 7 (05) : 3021 - 3024