Universal elements for non-linear operators and their applications

被引:27
|
作者
Shkarin, Stanislav [1 ]
机构
[1] Queens Univ Belfast, Dept Pure Math, Belfast BT7 1NN, Antrim, North Ireland
关键词
cyclic operators; hypercyclic operators; supercyclic operators; universal families;
D O I
10.1016/j.jmaa.2008.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that under certain topological conditions on the set of universal elements of a continuous map T acting on a topological space X, that the direct sum T circle plus M-g is universal, where Mg is multiplication by a generating element of a compact topological group. We use this result to characterize R+-supercyclic operators and to show that whenever T is a supercyclic operator and z(1) ,..., z(n) are pairwise different non-zero complex numbers, then the operator z(1) T circle plus ... circle plus z(n) T is cyclic. The latter answers affirmatively a question of Bayart and Matheron. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 50 条
  • [11] ON SPECTRA OF SOME NON-LINEAR OPERATORS
    YAMAMURO, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1961, 37 (08): : 447 - &
  • [12] EIGENVALUES OF SOME NON-LINEAR OPERATORS
    SUVOROV, SG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (06): : 501 - &
  • [13] ON SUBORDINATE OPERATORS OF NON-LINEAR EQUATIONS
    POKHOZHAEV, SI
    DOKLADY AKADEMII NAUK SSSR, 1981, 257 (02): : 282 - 286
  • [14] Interpolation of compact non-linear operators
    Bento, AJG
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (03) : 227 - 261
  • [15] SINGULAR PERTURBATIONS OF NON-LINEAR OPERATORS
    DEJAGER, EM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (6BIS): : T3 - T13
  • [16] INVERSION OF NON-LINEAR STOCHASTIC OPERATORS
    ADOMIAN, G
    RACH, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) : 39 - 46
  • [17] NON-LINEAR WEAKLY HYPERBOLIC OPERATORS
    GOURDIN, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (15): : 659 - 662
  • [18] NON-LINEAR EQUATIONS WITH MONOTONIC OPERATORS
    VAINBERG, AM
    DOKLADY AKADEMII NAUK SSSR, 1969, 188 (03): : 511 - &
  • [19] Contactless diagnostic of non-linear elements
    Maltsev, AI
    Dunaevsky, IG
    Losev, DV
    MODERN TECHNIQUES AND TECHNOLOGY: MTT' 2000, 2000, : 99 - 101
  • [20] Elements of Non-Linear Hamiltonian Dynamics
    Egydio de Carvalho, R.
    XVI BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, 2013, 465