Synthesis and characterization of nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering

被引:157
|
作者
Nejati, E. [1 ]
Mirzadeh, H. [2 ,3 ]
Zandi, M. [3 ]
机构
[1] Clemson Univ, Sch Mat Sci & Engn, AMRL, Clemson, SC 29625 USA
[2] Amirkabir Univ Technol, Dept Polymer Engn, Tehran, Iran
[3] Iran Polymer & Petrochem Inst, Tehran, Iran
关键词
Nanoparticle; Hydroxyapatite; Bone tissue engineering;
D O I
10.1016/j.compositesa.2008.05.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aims of this work were synthesis of rod shaped nano-hydroxyapatite (nHAP) and fabrication of novel nano-hydroxyapatite/poly(L-lactide acid) (nHAP/PLLA) composite scaffold. In the first step, the identification and morphology of chemically synthesized nHAP particles were determined by XRD, EDX, FTIR and SEM analyses. The rod shaped nHAP particles with an average size of approximately 37-65 nm in width and 100-400 nm in length were found similar to natural bone apatite in terms of chemical composition and structural morphology. In the second step, nHAP and micro sized HAP (mHAP) particles were used to fabricate HAP filled PLLA (HAP/PLLA) composites scaffolds using thermally induced phase separation method. The porosity of scaffolds was up to 85.06% and their average macropore diameter was in the range of 64-175 mu m. MR and XRD analyses showed some molecular interactions and chemical linkages between HAP particles and PLLA matrix. The compressive strength of nanocomposite scaffolds could high up to 14.9 MPa while those of pure PLLA and microcomposite scaffolds were 1.79 and 13.68 MPa, respectively. The cell affinity and biocompatibility of the nanocomposite scaffold were found to be higher than those of pure PLLA and microcomposite scaffolds. Following the results, the newly developed nHAP/PLLA composite scaffold is comparable with cancellous bone in terms of microstructure and mechanical strength, so it may be considered for bone tissue engineering applications. Published by Elsevier Ltd.
引用
收藏
页码:1589 / 1596
页数:8
相关论文
共 50 条
  • [31] Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering
    Wang, Huanan
    Li, Yubao
    Zuo, Yi
    Li, Jihua
    Ma, Sansi
    Cheng, Lin
    BIOMATERIALS, 2007, 28 (22) : 3338 - 3348
  • [32] Synthesis of nano-hydroxyapatite surface-grafting poly(L-lactide) under microwave irradiation
    Luo, Binghong
    Hsu, ChungEn
    Yang, Jing
    Zhao, Jianhao
    Zhou, Changren
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEMS AND MATERIAL ENGINEERING, PTS 1-7, 2011, 204-210 : 1929 - 1933
  • [33] Preparation and evaluation of nano-hydroxyapatite/β-tricalciumphosphate/chitosan composite scaffolds for bone tissue engineering
    Lin, T.
    Zhang, S. M.
    Li, J.
    Zhang, L.
    Liu, Y. H.
    Xue, Y. H.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 463 - 466
  • [34] Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering
    Kim, SS
    Park, MS
    Jeon, O
    Choi, CY
    Kim, BS
    BIOMATERIALS, 2006, 27 (08) : 1399 - 1409
  • [35] Characterization of electrospun poly(L-lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering
    McKeon-Fischer, K. D.
    Freeman, J. W.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (07) : 560 - 568
  • [36] Synthesis and Characterization of Naringin Functionalized Nano-Hydroxyapatite for Bone Tissue Engineering
    Rajula, M. Prem B.
    Narayanan, Vivek
    Venkatasubbu, G. Devanand
    Prema, D.
    Ravishankar, P. L.
    Mani, Rekha
    JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2023, 15 : S372 - S376
  • [37] Fibrin coating on poly (L-lactide) scaffolds for tissue engineering
    Gamboa-Martinez, T. C.
    Gomez Ribelles, J. L.
    Gallego Ferrer, G.
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2011, 26 (05) : 464 - 477
  • [38] In vivo evaluation of porous hydroxyapatite/poly D/L-lactide composite for bone substitutes and scaffolds
    Hasegawa, S
    Tamura, J
    Neo, M
    Fujibayashi, S
    Goto, K
    Shikinami, Y
    Okazaki, K
    Nakamura, T
    BIOCERAMICS 18, PTS 1 AND 2, 2006, 309-311 : 1311 - 1314
  • [39] Fabrication and characterization of poly-D-L-lactide/nano-hydroxyapatite composite scaffolds with poly (ethylene glycol) coating and dexamethasone releasing
    Chen, L.
    Tang, C. Y.
    Chen, D. Z.
    Wong, C. T.
    Tsui, C. P.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (16) : 1842 - 1849
  • [40] Preparation and characterization of poly(L-lactide)/poly(ε-caprolactone) fibrous scaffolds for cartilage tissue engineering
    Zhao, J
    Yuan, XY
    Cui, YL
    Ge, QB
    Yao, KD
    JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 91 (03) : 1676 - 1684