PHASE-TRANSLATION GROUP ACTIONS ON STRONGLY MONOTONE SKEW-PRODUCT SEMIFLOWS

被引:2
|
作者
Liu, Qiang
Wang, Yi [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Math, Wu Wen Tsun Key Lab Math, Hefei 230026, Anhui, Peoples R China
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
关键词
ORDER-PRESERVING SYSTEMS; ENZYMATIC FUTILE CYCLES; DYNAMICAL-SYSTEMS; DIFFERENTIAL-EQUATIONS; COOPERATIVE SYSTEMS; ASYMPTOTIC-BEHAVIOR; PARABOLIC EQUATIONS; CONVERGENCE; SYMMETRY; STABILITY;
D O I
10.1090/S0002-9947-2012-05555-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a convergence property for pseudo-bounded forward orbits of strongly monotone skew-product semiflows with invariant phase-translation group actions. The results are then applied to obtain global convergence of certain chemical reaction networks whose associated systems in reaction coordinates are monotone, as well as the dynamics of certain reaction-diffusion systems in time-recurrent structure including periodicity, almost periodicity and almost automorphy.
引用
收藏
页码:3781 / 3804
页数:24
相关论文
共 50 条
  • [31] EQUI-ATTRACTION AND CONTINUITY OF ATTRACTORS FOR SKEW-PRODUCT SEMIFLOWS
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Da Costa, Henrique B.
    Langa, Jose A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 2949 - 2967
  • [32] Minimal sets in monotone and sublinear skew-product semiflows II: Two-dimensional systems of differential equations
    Nunez, Carmen
    Obaya, Rafael
    Sanz, Ana M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (08) : 1899 - 1925
  • [33] Uniform exponential trisplitting - a new criterion for discrete skew-product semiflows
    Biris, Larisa Elena
    Ceausu, Traian
    Mihit, Claudia Luminita
    Popa, Ioan-Lucian
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (70) : 1 - 22
  • [34] Minimal sets in monotone and concave skew-product semiflows II: Two-dimensional systems of differential equations
    Nunez, Carmen
    Obaya, Rafael
    Sanz, Ana M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (05) : 3575 - 3607
  • [35] Schaffer spaces and uniform exponential stability of linear skew-product semiflows
    Preda, P
    Pogan, A
    Preda, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 212 (01) : 191 - 207
  • [36] On uniform exponential stability of linear skew-product semiflows in Banach spaces
    Megan, M
    Sasu, AL
    Sasu, B
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (01) : 143 - 154
  • [37] Exponential dichotomy and admissibility of linearized skew-product semiflows defined on a compact positively invariant subset of semiflows
    Wang, Bin-Guo
    Wang, Zhi-Cheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2062 - 2071
  • [38] On the uniform exponential stability of linear skew-product three-parameter semiflows
    Preda, Ciprian
    Preda, Petre
    Petre, Adriana-Paula
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2011, 54 (03): : 269 - 279
  • [39] Theorems of perron type for uniform exponential stability of linear SKEW-PRODUCT semiflows
    Megan, M
    Sasu, AL
    Sasu, BD
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2005, 12 (01): : 23 - 43
  • [40] Exponential instability of linear skew-product semiflows in terms of Banach function spaces
    Megan M.
    Sasu A.L.
    Sasu B.
    Results in Mathematics, 2004, 45 (3-4) : 309 - 318