A twisted quantum toroidal algebra

被引:1
|
作者
Jing, Naihuan [1 ,2 ]
Liu, Rongjia [1 ]
机构
[1] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Vertex operator; toroidal algebra; quantum algebra; VERTEX REPRESENTATIONS;
D O I
10.1007/s11464-013-0316-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As an analog of the quantum TKK algebra, a twisted quantum toroidal algebra of type A (1) is introduced. Explicit realization of the new quantum TKK algebra is constructed with the help of twisted quantum vertex operators over a Fock space.
引用
收藏
页码:1117 / 1128
页数:12
相关论文
共 50 条
  • [41] Quantum affine Gelfand–Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces
    Aleksander Tsymbaliuk
    Selecta Mathematica, 2010, 16 : 173 - 200
  • [42] On realization of some twisted toroidal Lie algebras
    Jing, Naihuan
    Mangum, Chad R.
    Misra, Kailash C.
    LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS, AND RELATED TOPICS, 2017, 695 : 139 - 148
  • [43] Twisted groups and locally toroidal regular polytopes
    McMullen, P
    Schulte, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) : 1373 - 1410
  • [44] On multiply twisted knots that are Seifert fibered or toroidal
    Purcell, Jessica S.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (02) : 219 - 256
  • [45] THE HYDROGEN ALGEBRA AS CENTERLESS TWISTED KAC-MOODY ALGEBRA
    DABOUL, J
    SLODOWY, P
    DABOUL, C
    PHYSICS LETTERS B, 1993, 317 (03) : 321 - 328
  • [46] TOROIDAL MODELS OF MAGNETIC FIELD WITH TWISTED STRUCTURE
    Petukhova, A. S.
    Petukhov, S., I
    SOLAR-TERRESTRIAL PHYSICS, 2019, 5 (02): : 69 - 75
  • [47] Fermionic realization of twisted toroidal Lie algebras
    Jing, Naihuan
    Mangum, Chad R.
    Misra, Kailash C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (08)
  • [48] The Explicit Twisted Group Algebra Structure of the Cayley–Dickson Algebra
    Guangbin Ren
    Xin Zhao
    Advances in Applied Clifford Algebras, 2023, 33
  • [49] Twisted duality of the CAR-algebra
    Baumgärtel, H
    Jurke, M
    Lledó, F
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) : 4158 - 4179
  • [50] Homological algebra of twisted quiver bundles
    Gothen, PB
    King, AD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 : 85 - 99