Self-propagating high-temperature synthesis of ultrafine and nanosized WC and TiC powders

被引:6
|
作者
Borovinskaya, I. P. [1 ]
Ignat'eva, T. I. [1 ]
Vershinnikov, V. I. [1 ]
Miloserdova, O. M. [1 ]
Semenova, V. N. [1 ]
机构
[1] Russian Acad Sci, Inst Struct Macrokinet & Mat Sci, Chernogolovka 142432, Moscow Region, Russia
关键词
self-propagating high-temperature synthesis (SHS); refractory compounds; carbides; nanosized powders; chemical dispersion;
D O I
10.1007/s11106-008-9051-1
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The possible application of self-propagating high-temperature synthesis (SHS) for preparing nanosized powders of refractory compounds is examined. The structurization of tungsten carbide and titanium carbide powders produced by SHS with a reduction stage is studied. The synthesis is based on exothermic reactions between tungsten oxide or titanium oxide, carbon, and magnesium metal. The influence of starting-mixture composition, ratio of components, and nature of adjusting additives on the particle size, morphology, and phase composition of WC and TiC powders is analyzed. Procedures are described for recovering tungsten carbide or titanium carbide from intermediate products using chemical dispersion, i.e., chemicothermal treatment of the ground cake in various solutions. As a result, impurities are removed and defect-rich intercrystalline layers are dissolved. Thus the sinter cake breaks into homogenous hexagonal WC or tetragonal TiC particles. The powder is additionally refined when the final product is treated in various solutions: the uniform shrinkage of the particles is observed because of their partial dissolution in acid and alkaline media, while the structure and properties in the central part of the substance or phase remain unchanged. The influence of the dispersion agent on the morphology and particle size of WC and TiC powders is examined. Conditions are determined for producing TiC and WC powders containing up to 80% of particles smaller than 30 nm using SHS with subsequent chemical dispersion. Based on the research, an SHS process is developed for producing ultrafine and nanosized TiC and WC powders on a commercial scale.
引用
收藏
页码:505 / 511
页数:7
相关论文
共 50 条
  • [41] Synthesis, calcination and characterization of Nanosized ceria powders by self-propagating room temperature method
    Matovic, Branko
    Dukic, Jelena
    Babic, Biljana
    Bucevac, Dusan
    Dohcevic-Mitrovic, Zorana
    Radovic, Marko
    Boskovic, Snezana
    CERAMICS INTERNATIONAL, 2013, 39 (05) : 5007 - 5012
  • [42] Self-propagating high-temperature synthesis is conquering the world
    Myasoedov, B. F.
    Grigoryan, A. G.
    HERALD OF THE RUSSIAN ACADEMY OF SCIENCES, 2008, 78 (03) : 320 - 324
  • [43] Self-propagating high-temperature synthesis of ferrochromium nitride
    Ziatdinov M.K.
    Shatokhin I.M.
    Steel Transl., 2009, 9 (789-794): : 789 - 794
  • [44] Self-propagating high-temperature synthesis of metal phosphides
    Chernogorenko, VB
    Muchnik, SV
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1996, 69 (12) : 1755 - 1763
  • [45] Self-propagating high-temperature synthesis of boron phosphide
    V. A. Mukhanov
    P. S. Sokolov
    Y. Le Godec
    V. L. Solozhenko
    Journal of Superhard Materials, 2013, 35 : 415 - 417
  • [46] SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS OF REFRACTORY COMPOUNDS
    MERZHANOV, AG
    VESTNIK AKADEMII NAUK SSSR, 1976, (10) : 76 - 84
  • [47] Equilibrium of Products of Self-Propagating High-Temperature Synthesis
    A. G. Merzhanov
    D. Yu. Kovalev
    V. M. Shkiro
    V. I. Ponomarev
    Doklady Physical Chemistry, 2004, 394 : 34 - 38
  • [48] Self-Propagating High-Temperature Synthesis of Energetic Borides
    Zhukov, Aleksandr
    Zhukov, Ilya
    Ziatdinov, Mansur
    Promakhov, Vladimir
    Vorozhtsov, Aleksandr
    Vorozhtsov, Sergey
    Dubkova, Yana
    PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT (PFSD-2016), 2016, 1772
  • [49] Cast self-propagating high-temperature synthesis composites
    Amosov, A.P.
    Zhongxing Jixie/Heavy Machinery, 1998, (04): : 36 - 37
  • [50] Self-propagating high-temperature synthesis in mechanoactivated compositions
    Korchagin M.A.
    Lyakhov N.Z.
    Russian Journal of Physical Chemistry B, Focus on Physics, 2008, 2 (1) : 77 - 82