A RIGOROUS AND EFFICIENT GPU IMPLEMENTATION OF LEVEL-SET SPARSE FIELD ALGORITHM

被引:0
|
作者
Galluzzo, Francesca [1 ]
Speciale, Nicolo [1 ]
Bernard, Olivier [2 ]
机构
[1] Univ Bologna, ARCES DEIS, Bologna, Italy
[2] Univ Lyon, CREATIS, CNRS UMR5220, Inserm U1044, Lyon, France
关键词
Level-set; Sparse Field; GPU computing; VISUALIZATION;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Level-set methods have proven to be powerful and flexible tools in computer vision and medical imaging. Unfortunately, the flexibility of such models has historically resulted in long computational times and therefore limited clinical utility. In this context, we propose the first rigorous GPU implementation of the sparse field algorithm. We show that this model is able to reach high computational efficiency with no reduction in segmentation accuracy compared to its sequential counterpart.
引用
收藏
页码:1705 / 1708
页数:4
相关论文
共 50 条
  • [41] The level-set method applied to droplet dynamics in the presence of an electric field
    Bjorklund, Erik
    COMPUTERS & FLUIDS, 2009, 38 (02) : 358 - 369
  • [42] An Efficient GPU Algorithm for Lattice Boltzmann Method on Sparse Complex Geometries
    Qin, Zhangrong
    Lu, Xusheng
    Lv, Long
    Tang, Zhongxiang
    Wen, Binghai
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (02) : 239 - 252
  • [43] An instruction set for the efficient implementation of the cordic algorithm
    Simon, S
    Müller, M
    Gryska, H
    Wortmann, A
    Buch, S
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 357 - 360
  • [44] A sparse proximal implementation of the LP dual active set algorithm
    Timothy A. Davis
    William W. Hager
    Mathematical Programming, 2008, 112 : 275 - 301
  • [45] A sparse proximal implementation of the LP dual active set algorithm
    Davis, Timothy A.
    Hager, WilliamW.
    MATHEMATICAL PROGRAMMING, 2008, 112 (02) : 275 - 301
  • [46] An efficient, scalable, and adaptable framework for solving generic systems of level-set PDEs
    Mosaliganti, Kishore R.
    Gelas, Arnaud
    Megason, Sean G.
    FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [47] Efficient GPU implementation of the multivariate empirical mode decomposition algorithm
    Wang, Zeyu
    Juhasz, Zoltan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 74
  • [48] GPU Implementation of Image Convolution Using Sparse Model with Efficient Storage Format
    Mohammed, Saira Banu Jamal
    Babu, M. Rajasekhara
    Sriram, Sumithra
    INTERNATIONAL JOURNAL OF GRID AND HIGH PERFORMANCE COMPUTING, 2018, 10 (01) : 54 - 70
  • [49] Block-based inverse lithography technology with adaptive level-set algorithm
    Huang, Chaojun
    Ma, Xu
    Zhang, Shengen
    Lin, Mu
    Porras-Diaz, Nestor
    Arce, Gonzalo R.
    OPTICS AND LASER TECHNOLOGY, 2025, 182
  • [50] An evolutionary algorithm for global optimization based on level-set evolution and Latin squares
    Wang, Yuping
    Dang, Chuangyin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (05) : 579 - 595