Coupled finite element and cellular automata methods for analysis of composite structures with fluid-structure interaction

被引:16
|
作者
Craugh, L. E. [1 ]
Kwon, Y. W. [2 ]
机构
[1] USN Acad, Dept Mech Eng, Annapolis, MD 21402 USA
[2] USN, Dept Mech & Aero Eng, Postgrad Sch, Monterey, CA 93943 USA
关键词
Discontinuous Galerkin method; Cellular automata; Composite plates; Fluid-structure interaction; Wave equation; DISCONTINUOUS GALERKIN METHODS; PENALTY PARAMETER; ELASTICITY; IMPACT; PLATES; APPROXIMATIONS; FORMULATION; FAILURE; FAMILY;
D O I
10.1016/j.compstruct.2013.02.021
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study examines multiple computational techniques to analyze dynamic responses of composite structures subject to Fluid-Structure Interaction (FSI). A plate bending finite element with displacement degrees of freedom only is developed and implemented using a Discontinuous Galerkin (DG) formulation. Because the plate elements can be stacked on top of one another like 3-D solid elements, delamination or debonding between any two layers can be modeled easily. Multiple approaches to analyzing such failure are presented and evaluated. A hybrid Finite Element-Cellular Automata (FE-CA) approach is also presented to model a fluid domain as an acoustic field using the wave equation. The coupled technique can take advantage of both methods such as computational efficiency, non-reflecting boundary representation and easy coupling with a structure with a complex shape. The FE-CA fluid model is then combined with the DG structural model to simulate fluid-structure interaction. All the computational techniques are assessed for their accuracy by comparing with analytical, experimental and other numerical solutions. Each technique addressed shows promise for flexible and accurate modeling of dynamic behaviors of damaged or undamaged laminated composite structures subject to fluid-structure interaction with moderate computational costs. Published by Elsevier Ltd.
引用
收藏
页码:124 / 137
页数:14
相关论文
共 50 条
  • [21] Possibilities of the Particle Finite Element Method (PFEM) for hydrodynamic and fluid-structure interaction analysis of port structures
    Celigueta, MA
    Oñate, E
    Del Pin, F
    Idelsohn, SR
    Maritime Heritage and Modern Ports, 2005, : 437 - 445
  • [22] A finite element framework for fluid-structure interaction of turbulent cavitating flows with flexible structures
    Darbhamulla, Nihar B.
    Jaiman, Rajeev K.
    COMPUTERS & FLUIDS, 2024, 277
  • [23] Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery
    Lopes, D.
    Agujetas, R.
    Puga, H.
    Teixeira, J.
    Lima, R.
    Alejo, J. P.
    Ferrera, C.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 207
  • [24] Finite element analysis of fluid-structure interaction for the design of MAV aerodynamic shape
    Yu, Y.
    Yang, Q.
    Wang, X.
    COMPUTERS & FLUIDS, 2013, 76 : 50 - 57
  • [25] Finite element analysis of fluid-structure interaction in the hydromechanical deep drawing process
    Abbadeni, Mohammed
    Zidane, Ibrahim
    Zahloul, Hamou
    Fatu, Aurelian
    Hajjam, Mohamed
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (11) : 5485 - 5491
  • [26] A SYMMETRIC FINITE-ELEMENT FORMULATION FOR ACOUSTIC FLUID-STRUCTURE INTERACTION ANALYSIS
    SANDBERG, G
    GORANSSON, P
    JOURNAL OF SOUND AND VIBRATION, 1988, 123 (03) : 507 - 515
  • [27] Finite element analysis of fluid-structure interaction in the hydromechanical deep drawing process
    Mohammed Abbadeni
    Ibrahim Zidane
    Hamou Zahloul
    Aurelian Fatu
    Mohamed Hajjam
    Journal of Mechanical Science and Technology, 2017, 31 : 5485 - 5491
  • [28] Fluid-structure interaction analysis in microfluidic devices: A dimensionless finite element approach
    Afrasiab, Hamed
    Movahhedy, Mohammad R.
    Assempour, Ahmad
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 68 (09) : 1073 - 1086
  • [29] Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis
    Shangguan, WB
    Lu, ZH
    JOURNAL OF SOUND AND VIBRATION, 2004, 275 (1-2) : 193 - 221
  • [30] Recent Trend in Finite Element Method for Damage Analysis and Fluid-Structure Interaction Analysis
    Nakasumi, Shogo
    Sawada, Tomohiro
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2010, 55 (06) : 381 - 386