Graded Morita Equivalence of Clifford Superalgebras

被引:1
|
作者
Zhao, Deke [1 ]
机构
[1] Beijing Normal Univ, Sch Appl Math, Zhuhai 519087, Peoples R China
关键词
Clifford superalgebras; graded Morita equivalence; graded basic superalgebras; ALGEBRAS; RINGS;
D O I
10.1007/s00006-012-0340-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note uses a variation of graded Morita theory for finite dimensional superalgebras to determine explicitly the graded basic superalgebras for all real and complex Clifford superalgebras. As an application, the Grothendieck groups of the category of left -graded modules over all real and complex Clifford superalgebras are described explicitly.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [41] Noncommutative fermions and Morita equivalence
    Correa, DH
    Moreno, EF
    PHYSICS LETTERS B, 2002, 534 (1-4) : 185 - 194
  • [42] Modular Curvature and Morita Equivalence
    Matthias Lesch
    Henri Moscovici
    Geometric and Functional Analysis, 2016, 26 : 818 - 873
  • [43] Morita equivalence of inverse semigroups
    Afara, B.
    Lawson, M. V.
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 119 - 130
  • [44] Morita equivalence and Pedersen ideals
    Ara, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1041 - 1049
  • [45] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [46] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2001, 17 (03) : 437 - 454
  • [47] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [48] CATEGORIES OF ACTIONS AND MORITA EQUIVALENCE
    ELKINS, BL
    ZILBER, JA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A357 - A357
  • [49] Morita equivalence and quotient rings
    Harris, Morton E.
    JOURNAL OF ALGEBRA, 2018, 502 : 45 - 48
  • [50] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247