Machine Learning Models for Predicting Bank Loan Eligibility

被引:1
|
作者
Orji, Ugochukwu E. [1 ]
Ugwuishiwu, Chikodili H. [1 ]
Nguemaleu, Joseph C. N. [1 ]
Ugwuanyi, Peace N. [1 ]
机构
[1] Univ Nigeria, Dept Comp Sci, Nsukka, Enugu, Nigeria
关键词
KNN; SVM; Bagging and Boosting techniques; Efficient ML Algorithms; Loan approval prediction;
D O I
10.1109/NIGERCON54645.2022.9803172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning algorithms are revolutionizing processes in all fields including; real-estate, security, bioinformatics, and the financial industry. The loan approval process is one of the most tedious task in the banking industry. Modern technology such as machine learning models can improve the speed, efficacy, and accuracy of loan approval processes. This paper presents six (6) machine learning algorithms (Random Forest, Gradient Boost, Decision Tree, Support Vector Machine, K-Nearest Neighbor, and Logistic Regression) for predicting loan eligibility. The models were trained on the historical dataset 'Loan Eligible Dataset,' available on Kaggle and licensed under Database Contents License (DbCL) v1.0. The dataset was processed and analyzed using Python programming libraries on Kaggle's Jupyter Notebook cloud environment. Our research result showed high-performance accuracy, with the Random forest algorithm having the highest score of 95.55% and Logistic regression with the lowest score of 80%. Our Models outperformed two of the three loan prediction models found in the literature in terms of precision-recall and accuracy.
引用
收藏
页码:636 / 640
页数:5
相关论文
共 50 条
  • [21] Predicting liver disorder based on machine learning models
    Zhao, Jing
    Wang, Peixia
    Pan, Yubiao
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (10): : 978 - 984
  • [22] The limitations of machine learning models for predicting scientific replicability
    Crockett, M. J.
    Bai, Xuechunzi
    Kapoor, Sayash
    Messeri, Lisa
    Narayanan, Arvind
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (33)
  • [23] Statistical and machine learning models for predicting spalling in CRCP
    Al-Khateeb, Ghazi G.
    Alnaqbi, Ali
    Zeiada, Waleed
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Predicting Credit Repayment Capacity with Machine Learning Models
    Filiz, Gozde
    Bodur, Tolga
    Yaslidag, Nihal
    Sayar, Alperen
    Cakar, Tuna
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [25] Machine learning models predicting undertriage in telephone triage
    Inokuchi, Ryota
    Iwagami, Masao
    Sun, Yu
    Sakamoto, Ayaka
    Tamiya, Nanako
    ANNALS OF MEDICINE, 2022, 54 (01) : 2990 - 2997
  • [26] Predicting pipeline burst pressures with machine learning models
    Phan, Hieu Chi
    Dhar, Ashutosh Sutra
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2021, 191
  • [27] Machine Learning Models for Predicting Zirconocene Properties and Barriers
    Kirkland, Justin K.
    Kumawat, Jugal
    Shaban Tameh, Maliheh
    Tolman, Tyson
    Lambert, Allison C.
    Lief, Graham R.
    Yang, Qing
    Ess, Daniel H.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (03) : 775 - 784
  • [28] Improved Machine Learning Models for Predicting Selective Compounds
    Ning, Xia
    Walters, Michael
    Karypisxr, George
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (01) : 38 - 50
  • [29] Predicting Asthma Exacerbations Using Machine Learning Models
    Turcatel, Gianluca
    Xiao, Yi
    Caveney, Scott
    Gnacadja, Gilles
    Kim, Julie
    Molfino, Nestor A.
    ADVANCES IN THERAPY, 2025, 42 (01) : 362 - 374
  • [30] Predicting Personality with Twitter Data and Machine Learning Models
    Ergu, Izel
    Isik, Zerrin
    Yankayis, Ismail
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 386 - 390