Influence of Fe3O4/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance

被引:23
|
作者
Li, Jingwei [1 ]
Wei, Junji [1 ]
Pu, Zejun [1 ]
Xu, Mingzhen [1 ]
Jia, Kun [1 ]
Liu, Xiaobo [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Branch Funct Mat, Inst Microelect & Solid State Elect, High Temp Resistant Polymers & Composites Key Lab, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene oxide; Iron phthalocyanine oligomer; Magnetite; Hybrids; Magnetic properties; Microwave absorbing properties; ABSORPTION PROPERTIES; ELECTROMAGNETIC PROPERTIES; ELECTRICAL-CONDUCTIVITY; CARBON NANOTUBES; PHTHALOCYANINE; MAGNETITE; SINGLE; FE3O4; MICROSPHERES; FABRICATION;
D O I
10.1016/j.jmmm.2015.09.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Novel graphene oxide@Fe3O4/iron phthalocyanine (GO@Fe3O4/FePc) hybrid materials were prepared through a facile one-step solvothermal method with graphene oxide (GO) sheets as template in ethylene glycol. The morphology and structure of the hybrid materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD), respectively. The results indicated that the mono-dispersed Fe3O4/FePc hybrid microspheres were uniformly self-assembled along the surface of GO sheets through electrostatic attraction and the morphology can be tuned by controlling the amount of 4,4'-bis (3,4-dicyanophenoxy)biphenyl (BPH). As the BPH content increases, magnetization measurement of the GO@Fe3O4/FePc hybrid materials showed that the coercivity increased, while saturation magnetizations decreased. Electromagnetic properties of the hybrid materials were measured in the range of 0.5-18.0 GHz. The microwave absorbing performance enhanced with the increase of BPH content and a maximum reflection loss of -27.92 dB was obtained at 10.8 GHz when the matching thickness was 2.5 mm. Therefore, the novel electromagnetic hybrid materials can be considered as potential materials in the microwave absorbing field. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [21] Fe3O4 uniformly decorated reduced graphene oxide aerogel for epoxy nanocomposites with high EMI shielding performance
    Yang, Xueqin
    Zhang, Yifan
    Luo, Jiamei
    Tusiime, Rogers
    Lu, Chengzhi
    Xue, Yi
    Zhou, Jinli
    Liu, Yong
    Zhang, Hui
    Yu, Jianyong
    COMPOSITES COMMUNICATIONS, 2022, 36
  • [22] Fe3O4/graphene oxide/Fe4[Fe(CN)6]3 nanocomposite for high performance electromagnetic interference shielding
    Majid, F.
    Ali, M. D.
    Ata, S.
    Bibi, I.
    Malik, A.
    Ali, A.
    Alwadai, N.
    Albalawi, H.
    Shoaib, M.
    Bukhari, S. A.
    Iqbal, M.
    CERAMICS INTERNATIONAL, 2021, 47 (08) : 11587 - 11595
  • [23] Preparation and electrochemical properties of cobalt-phthalocyanine-decorated Fe3O4 nanoparticles
    Hong, Sun-Mi
    Son, Hoseung
    Park, Jong S.
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2018, 22 (07) : 611 - 618
  • [24] Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles
    Li, Jie
    Zhang, Shouwei
    Chen, Changlun
    Zhao, Guixia
    Yang, Xin
    Li, Jiaxing
    Wang, Xiangke
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) : 4991 - 5000
  • [25] Facile synthesis of Fe3O4 nanorod decorated reduced graphene oxide (RGO) for supercapacitor application
    Das, Ashok Kumar
    Sahoo, Sumanta
    Arunachalam, Prabhakarn
    Zhang, Suojiang
    Shim, Jae-Jin
    RSC ADVANCES, 2016, 6 (108): : 107057 - 107064
  • [26] Fe3O4 Nanoparticle-Decorated Graphene Oxide Nanosheets for Magnetic Assembly of Artificial Nacre
    Wang, Yang
    Chen, Xiang
    Zhang, Zheng
    Li, Ting
    Zhang, Xuhui
    Xia, Bihua
    Chen, Mingqing
    Liu, Tianxi
    Dong, Weifu
    ACS APPLIED NANO MATERIALS, 2021, 4 (09) : 9689 - 9696
  • [27] Infrared stealth and microwave absorption properties of reduced graphene oxide functionalized with Fe3O4
    Wu, Kuo-Hui
    Huang, Wen-Chien
    Wang, Je-Chuang
    Hung, Wei-Che
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 276
  • [28] Preparation of reduced graphene oxide/Fe3O4 nanocomposite and its microwave electromagnetic properties
    Ma, Erlong
    Li, Jiajun
    Zhao, Naiqin
    Liu, Enzuo
    He, Chunnian
    Shi, Chunsheng
    MATERIALS LETTERS, 2013, 91 : 209 - 212
  • [29] Fe-phthalocyanine oligomer/Fe3O4 nano-hybrid particles and their effect on the properties of polyarylene ether nitriles magnetic nanocomposites
    Meng, Fanbin
    Zhao, Rui
    Xu, Mingzhen
    Zhan, Yingqing
    Lei, Yajie
    Zhong, Jiachun
    Liu, Xiaobo
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 375 (1-3) : 245 - 251
  • [30] Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance
    Zhang, Xue
    Zhu, Wenfeng
    Zhang, Weidong
    Zheng, Shuirong
    Qi, Shuhua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (09) : 7194 - 7202