A SELF-SIMILAR LOCAL NEURO-FUZZY MODEL FOR SHORT-TERM DEMAND FORECASTING

被引:9
|
作者
Hassani, Hossein [1 ]
Abdollahzadeh, Majid [2 ]
Iranmanesh, Hossein [3 ,4 ]
Miranian, Arash [2 ]
机构
[1] Bournemouth Univ, Execut Business Ctr, Bournemouth BH8 8EB, Dorset, England
[2] Islamic Azad Univ, Pardis Branch, Dept Mech Engn, Tehran, Iran
[3] Univ Tehran, Coll Engn, Dept Ind Engn, Tehran, Iran
[4] IIES, Tehran, Iran
关键词
Mutual information; self-similar local neuro-fuzzy model; short-term load forecasting; LOAD; NETWORK; PRICE; PREDICTION;
D O I
10.1007/s11424-014-3299-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a self-similar local neuro-fuzzy (SSLNF) model with mutual information-based input selection algorithm for the short-term electricity demand forecasting. The proposed selfsimilar model is composed of a number of local models, each being a local linear neuro-fuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axis-orthogonal sub-domains and then fits an LLNF model and its associated validity function on each sub-domain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence short-term electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from short-term load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 50 条
  • [21] Integrating neuro-fuzzy system and evolutionary optimization algorithms for short-term power generation forecasting
    Rezaee, Mustafa Jahangoshai
    Dadkhah, Mojtaba
    Falahinia, Masoud
    INTERNATIONAL JOURNAL OF ENERGY SECTOR MANAGEMENT, 2019, 13 (04) : 828 - 845
  • [22] Modified Neural and Neuro-fuzzy Approach for Short Term Load Forecasting
    Chaturvedi, D. K.
    Premdayal, Sinha Anand
    2012 2ND INTERNATIONAL CONFERENCE ON POWER, CONTROL AND EMBEDDED SYSTEMS (ICPCES 2012), 2012,
  • [23] Multilayer neuro-fuzzy network for short term electric load forecasting
    Bodyanskiy, Yevgeniy
    Popov, Sergiy
    Rybalchenko, Taras
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2008, 5010 : 339 - 348
  • [24] Mid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models
    Iranmanesh, Hossein
    Abdollahzade, Majid
    Miranian, Arash
    ENERGIES, 2012, 5 (01) : 1 - 21
  • [25] A neuro-fuzzy model for ozone forecasting
    Latini, G
    Cocci, GR
    Passerini, G
    Tascini, S
    Air Pollution XIII, 2005, 82 : 117 - 126
  • [26] Neuro-Fuzzy System for Medium-Term Electric Energy Demand Forecasting
    Pelka, Pawel
    Dudek, Grzegorz
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT I, 2018, 655 : 38 - 47
  • [27] An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting
    Kazemi, S. M. R.
    Hoseini, Mir Meisam Seied
    Abbasian-Naghneh, S.
    Rahmati, Seyed Habib A.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2014, 21 (02) : 311 - 326
  • [28] A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting
    Kampouropoulos, Konstantinos
    Andrade, Fabio
    Garcia, Antoni
    Romeral, Luis
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2014, 14 (01) : 9 - 14
  • [29] Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS)
    Ghenai, Chaouki
    Al-Mufti, Omar Ahmed Abduljabbar
    Al-Isawi, Omar Adil Mashkoor
    Amirah, Lutfi Hatem Lutfi
    Merabet, Adel
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [30] Neuro-fuzzy Approach for Short-term Electricity Price Forecasting Developed MATLAB-based Software
    Esfahani, M.
    FUZZY INFORMATION AND ENGINEERING, 2011, 3 (04) : 339 - 350