Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning

被引:64
|
作者
Kazmierski, Kamil [1 ]
Hadas, Tomasz [1 ]
Sosnica, Krzysztof [1 ]
机构
[1] Wroclaw Univ Environm & Life Sci, Inst Geodesy & Geoinformat, PL-50357 Wroclaw, Poland
关键词
multi-GNSS; real-time; PPP; stochastic modeling; weighting; PERFORMANCE ASSESSMENT; GPS; GALILEO; SERVICE; IGS; GLONASS; ORBITS; BEIDOU; CLOCKS; RTK;
D O I
10.3390/rs10010084
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The combination of Global Navigation Satellite Systems (GNSS) may improve the accuracy and precision of estimated coordinates, as well as the convergence time of Precise Point Positioning (PPP) solutions. The key conditions are the correct functional model and the proper weighting of observations, for which different characteristics of multi-GNSS signals should be taken into account. In post-processing applications, the optimum stochastic model can be obtained through the analysis of post-fit residuals, but for real-time applications the stochastic model has to be defined in advanced. We propose five different weighting schemes for the GPS + GLONASS + Galileo + BeiDou combination, including two schemes with no intra-system differences, and three schemes that are based on signal noise and/or quality of satellite orbits. We perform GPS-only and five multi-GNSS solutions representing each weighting scheme. We analyze formal errors of coordinates, coordinate repeatability, and solution convergence time. We found that improper or equal weighting may improve formal errors but decreases coordinate repeatability when compared to the GPS-only solution. Intra-system weighting based on satellite orbit quality allows for a reduction of formal errors by 40%, for shortening convergence time by 40% and 47% for horizontal and vertical components, respectively, as well as for improving coordinate repeatability by 6%.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Reliable Multi-GNSS Real-Time Kinematic Positioning
    Heinrich, Michael
    Sperl, Andreas
    Mittmann, Ulrich
    Henkel, Patrick
    PROCEEDINGS OF ELMAR-2018: 60TH INTERNATIONAL SYMPOSIUM ELMAR-2018, 2018, : 103 - 108
  • [22] Real-time multi-GNSS Precise Point Positioning using IGS-RTS products in Antarctic region
    Alkan, Reha Metin
    Erol, Serdar
    Mutlu, Bilal
    POLAR SCIENCE, 2022, 32
  • [23] Orbital Artifacts in Multi-GNSS Precise Point Positioning Time Series
    Zajdel, Radoslaw
    Kazmierski, Kamil
    Sosnica, Krzysztof
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (02)
  • [24] Multi-GNSS precise point positioning for precision agriculture
    Jing Guo
    Xingxing Li
    Zhenhong Li
    Leyin Hu
    Guijun Yang
    Chunjiang Zhao
    David Fairbairn
    David Watson
    Maorong Ge
    Precision Agriculture, 2018, 19 : 895 - 911
  • [25] Multi-GNSS precise point positioning for precision agriculture
    Guo, Jing
    Li, Xingxing
    Li, Zhenhong
    Hu, Leyin
    Yang, Guijun
    Zhao, Chunjiang
    Fairbairn, David
    Watson, David
    Ge, Maorong
    PRECISION AGRICULTURE, 2018, 19 (05) : 895 - 911
  • [26] Multi-GNSS Single Frequency Precise Point Positioning
    Innac, Anna
    Gaglione, Salvatore
    Angrisano, Antonio
    2018 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS (METROSEA), 2018, : 222 - 226
  • [27] Research on multi-GNSS precise point positioning (MSMFPPP)
    Zang, Nan
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (11):
  • [28] Performance Analysis of Multi-GNSS Precise Point Positioning
    Guo, Jiang
    Li, Xiaotao
    Chen, Xingyu
    Geng, Jianghui
    Wen, Qiang
    Pan, YuanXin
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2017 PROCEEDINGS, VOL III, 2017, 439 : 377 - 387
  • [29] Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data
    Su, Ke
    Jin, Shuanggen
    JOURNAL OF NAVIGATION, 2018, 71 (06): : 1363 - 1380
  • [30] Evaluation of Real-time Precise Point Positioning with Ambiguity Resolution Based on Multi-GNSS OSB Products from CNES
    Du, Shi
    Shu, Bao
    Xie, Wei
    Huang, Guanwen
    Ge, Yulong
    Li, Pan
    REMOTE SENSING, 2022, 14 (19)