Hyperfine interactions in two-dimensional HgTe topological insulators

被引:33
|
作者
Mathias Lunde, Anders [1 ,2 ,3 ]
Platero, Gloria [1 ]
机构
[1] CSIC, ICMM, E-28049 Madrid, Spain
[2] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain
[3] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-1168 Copenhagen, Denmark
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 11期
关键词
DYNAMIC NUCLEAR-POLARIZATION; ATOMIC SCREENING CONSTANTS; QUANTUM DOTS; SCF FUNCTIONS; NANOSTRUCTURES; RELAXATION; RESONANCE; ELECTRONS; STATE; WELLS;
D O I
10.1103/PhysRevB.88.115411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the hyperfine interaction between the nuclear spins and the electrons in a HgTe quantum well, which is the prime experimentally realized example of a two-dimensional topological insulator. The hyperfine interaction is a naturally present, internal source of broken time-reversal symmetry from the point of view of the electrons. The HgTe quantum well is described by the so-called Bernevig-Hughes-Zhang (BHZ) model. The basis states of the BHZ model are combinations of both S- and P-like symmetry states, which means that three kinds of hyperfine interactions play a role: (i) the Fermi contact interaction, (ii) the dipole-dipole-like coupling, and (iii) the electron-orbital to nuclear-spin coupling. We provide benchmark results for the forms and magnitudes of these hyperfine interactions within the BHZ model, which give a good starting point for evaluating hyperfine interactions in any HgTe nanostructure. We apply our results to the helical edge states of a HgTe two-dimensional topological insulator and show how their total hyperfine interaction becomes anisotropic and dependent on the orientation of the sample edge within the plane. Moreover, for the helical edge states, the hyperfine interaction due to the P-like states can dominate over the S-like contribution in certain circumstances.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Brillouin torus decomposition for two-dimensional topological insulators
    Kordon, F.
    Fernandez, J.
    Roura-Bas, P.
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [42] High throughput screening for two-dimensional topological insulators
    Li, Xinru
    Zhang, Zeying
    Yao, Yugui
    Zhang, Hongbin
    2D MATERIALS, 2018, 5 (04):
  • [43] Photo- and Thermoelectric Phenomena in Two-Dimensional Topological Insulators and Semimetals Based on HgTe Quantum Wells (Scientific Summary)
    Kvon, Z. D.
    Savchenko, M. L.
    Kozlov, D. A.
    Olshanetsky, E. B.
    Yaroshevich, A. S.
    Mikhailov, N. N.
    JETP LETTERS, 2020, 112 (03) : 161 - 172
  • [44] Photo- and Thermoelectric Phenomena in Two-Dimensional Topological Insulators and Semimetals Based on HgTe Quantum Wells (Scientific Summary)
    Z. D. Kvon
    M. L. Savchenko
    D. A. Kozlov
    E. B. Olshanetsky
    A. S. Yaroshevich
    N. N. Mikhailov
    JETP Letters, 2020, 112 : 161 - 172
  • [45] Topological insulators based on HgTe
    Kvon, Z. D.
    Kozlov, D. A.
    Olshanetsky, E. B.
    Gusev, G. M.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    PHYSICS-USPEKHI, 2020, 63 (07) : 629 - 647
  • [46] Shift Insulators: Rotation-Protected Two-Dimensional Topological Crystalline Insulators
    Liu, Shang
    Vishwanath, Ashvin
    Khalaf, Eslam
    PHYSICAL REVIEW X, 2019, 9 (03):
  • [47] Characterization of three-dimensional topological insulators by two-dimensional invariants
    Roy, Rahul
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [48] Microwave Photoresistance of a Two-Dimensional Topological Insulator in a HgTe Quantum Well
    Yaroshevich, A. S.
    Kvon, Z. D.
    Gusev, G. M.
    Mikhailov, N. N.
    JETP LETTERS, 2020, 111 (02) : 121 - 125
  • [49] Two-dimensional topological insulator state in double HgTe quantum well
    Gusev, G. M.
    Olshanetsky, E. B.
    Hernandez, F. G. G.
    Raichev, O. E.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [50] Microwave Photoresistance of a Two-Dimensional Topological Insulator in a HgTe Quantum Well
    A. S. Yaroshevich
    Z. D. Kvon
    G. M. Gusev
    N. N. Mikhailov
    JETP Letters, 2020, 111 : 121 - 125