Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals

被引:31
|
作者
Wang, J. [1 ]
Deng, J. [1 ]
Feckan, M. [2 ,3 ]
机构
[1] Guizhou Univ, Guiyang, Peoples R China
[2] Comenius Univ, Bratislava, Slovakia
[3] Slovak Acad Sci, Inst Math, Bratislava, Slovakia
基金
中国国家自然科学基金;
关键词
Convex Function; Fractional Calculus; Fractional Differential Equation; Fractional Integral; Fundamental Identity;
D O I
10.1007/s11253-013-0773-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using two fundamental fractional integral identities, we deduce some new Hermite-Hadamard-type inequalities for differentiable r-convex functions and twice-differentiable r-convex functions involving Riemann-Liouville fractional integrals.
引用
收藏
页码:193 / 211
页数:19
相关论文
共 50 条
  • [31] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Zhang, Yuruo
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [32] NEW EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITIES INVOLVING RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Budak, H.
    Kara, H.
    Sarikaya, M. Z.
    Kiris, M. E.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 665 - 678
  • [33] Hermite-Hadamard-Fejer Type Inequalities for (k, h)-Convex Function via Riemann-Liouville and Conformable Fractional Integrals
    Set, Erhan
    Karaoglan, Ali
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [34] m-GEOMETRICALLY CONVEX FUNCTIONS AND HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE INTEGRALS
    Akdemir, Ahmet Ocak
    Set, Erhan
    Ozdemir, M. Emin
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 56 - 58
  • [35] Hermite–Hadamard-type inequalities involving ψ-Riemann–Liouville fractional integrals via s-convex functions
    Yong Zhao
    Haiwei Sang
    Weicheng Xiong
    Zhongwei Cui
    Journal of Inequalities and Applications, 2020
  • [36] Hermite-Hadamard Inequalities Involving Riemann-Liouville Fractional Integrals via s-convex Functions and Applications to Special Means
    Wang, JinRong
    Li, Xuezhu
    Zhou, Yong
    FILOMAT, 2016, 30 (05) : 1143 - 1150
  • [37] HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS
    Xi, Bo-Yan
    Qi, Feng
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) : 530 - 546
  • [38] Quantum Inequalities of Hermite-Hadamard Type for r-Convex Functions
    You, Xuexiao
    Kara, Hasan
    Budak, Huseyin
    Kalsoom, Humaira
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [40] On Hadamard Type Fractional Inequalities for Riemann-Liouville Integrals via a Generalized Convexity
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (01)