Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries

被引:288
|
作者
Radin, Maxwell D. [1 ]
Siegel, Donald J. [2 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; OXYGEN BATTERIES; LI2O2; LIMITATIONS; DISCHARGE; OXIDE; MECHANISMS; TRANSITION;
D O I
10.1039/c3ee41632a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanisms and efficiency of charge transport in lithium peroxide (Li2O2) are key factors in understanding the performance of non-aqueous Li-air batteries. Towards revealing these mechanisms, here we use first-principles calculations to predict the concentrations and mobilities of charge carriers and intrinsic defects in Li2O2 as a function of cell voltage. Our calculations reveal that changes in the charge state of O-2 dimers controls the defect chemistry and conductivity of Li2O2. Negative lithium vacancies (missing Li+) and small hole polarons are identified as the dominant charge carriers. The electronic conductivity associated with polaron hopping (5 x 10(-20) S cm(-1)) is comparable to the ionic conductivity arising from the migration of Li-ions (4 x 10(-19) S cm(-1)), suggesting that charge transport in Li2O2 occurs through a mixture of ionic and polaronic contributions. These data indicate that the bulk regions of crystalline Li2O2 are insulating, with appreciable charge transport occurring only at moderately high charging potentials that drive partial delithiation. The implications of limited charge transport on discharge and recharge mechanisms are discussed, and a two-stage charging process linking charge transport, discharge product morphology, and overpotentials is described. We conclude that achieving both high discharge capacities and efficient charging will depend upon access to alternative mechanisms that bypass bulk charge transport. More generally, we describe how the presence of a species that can change charge state -e.g., O-2 dimers in alkaline metal-based peroxides - may impact rechargeability in metal-air batteries.
引用
收藏
页码:2370 / 2379
页数:10
相关论文
共 50 条
  • [41] Magnetoelectric Coupling for Metal-Air Batteries
    Wang, Hengwei
    Wang, Keliang
    Zuo, Yayu
    Wei, Manhui
    Pei, Pucheng
    Zhang, Pengfei
    Chen, Zhuo
    Shang, Nuo
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (05)
  • [42] Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries
    Xia, Qing
    Zhai, Yanjie
    Zhao, Lanling
    Wang, Jun
    Li, Deyuan
    Zhang, Lili
    Zhang, Jintao
    ENERGY MATERIALS, 2022, 2 (03):
  • [43] Recent Advancement of Electrically Rechargeable Di-Trivalent Metal-Air Batteries for Future Mobility
    Alemu, Molla Asmare
    Worku, Ababay Ketema
    Getie, Muluken Zegeye
    RESULTS IN CHEMISTRY, 2023, 6
  • [44] BIFUNCTIONAL AIR-ELECTRODE FOR METAL-AIR BATTERIES
    CARLSSON, L
    OJEFORS, L
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C111 - C111
  • [45] Aqueous Lithium/Air Rechargeable Batteries
    Zhang, Tao
    Imanishi, Nobuyuki
    Takeda, Yasuo
    Yamamoto, Osamu
    CHEMISTRY LETTERS, 2011, 40 (07) : 668 - 673
  • [46] Aqueous air cathodes and catalysts for metal-air batteries
    Timofeeva, Elena V.
    Segre, Carlo U.
    Pour, Gavin S.
    Vazquez, Matthew
    Patawah, Benard L.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 38
  • [47] Mixed Metal Oxide Catalysts for Rechargeable Lithium-Air Batteries
    Anandan, Venkataramani
    Kudla, Robert
    Drews, Andy
    Adams, Jim
    Karulkar, Mohan
    RECHARGEABLE LITHIUM AND LITHIUM ION BATTERIES, 2012, 41 (41): : 167 - 174
  • [48] Beyond metal-air battery, emerging aqueous metal-hydrogen peroxide batteries with improved performance
    Liu, Jiehua
    Zhou, Meng
    Jin, Ke
    Li, Jun
    Meng, Fancheng
    Wei, Xiangfeng
    BATTERY ENERGY, 2024, 3 (02):
  • [49] Progress in rechargeable lithium metal batteries
    Wang Li
    He Xiangming
    Pu Weihua
    Jiang Changyin
    Wan Chunrong
    PROGRESS IN CHEMISTRY, 2006, 18 (05) : 641 - 647
  • [50] Lithium metal anodes for rechargeable batteries
    Xu, Wu
    Wang, Jiulin
    Ding, Fei
    Chen, Xilin
    Nasybutin, Eduard
    Zhang, Yaohui
    Zhang, Ji-Guang
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) : 513 - 537