Bias Analysis and Mitigation in Data-Driven Tools Using Provenance

被引:1
|
作者
Moskovitch, Yuval [1 ]
Li, Jinyang [1 ]
Jagadish, H. V. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
INFORMATION;
D O I
10.1145/3530800.3534528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fairness and bias mitigation in data-driven systems has been extensively studied in recent years. In this paper, we suggest a novel approach towards fairness analysis and bias mitigation utilizing the notion of provenance, which was shown to be useful for similar tasks in the context of data and process analyses. We illustrate the idea using a simple use-case demonstrating a scenario of mitigating bias caused by inadequate minority group representation. We conclude with an outline of opportunities and challenges in developing provenance-based solutions for bias analysis and mitigation in data-driven systems.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] Sensitivity Analysis using Data-Driven Parametric Macromodels
    Chemmangat, Krishnan
    Ferranti, Francesco
    Knockaert, Luc
    Dhaene, Tom
    2011 15TH IEEE WORKSHOP ON SIGNAL PROPAGATION ON INTERCONNECTS (SPI), 2011, : 111 - 114
  • [22] Analysis of the eutrophication in a wetland using a data-driven model
    Zarkami, Rahmat
    Abedini, Ali
    Pasvisheh, Roghayeh Sadeghi
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (12)
  • [23] A bias-variance perspective of data-driven control
    Colin, Kevin
    Ju, Yue
    Bombois, Xavier
    Rojas, Cristian R.
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2024, 58 (15): : 85 - 90
  • [24] Algorithmic bias in data-driven innovation in the age of AI
    Akter, Shahriar
    McCarthy, Grace
    Sajib, Shahriar
    Michael, Katina
    Dwivedi, Yogesh K.
    D'Ambra, John
    Shen, K. N.
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2021, 60 (60)
  • [25] Model predictive control: A data-driven approach using simple fuzzy tools
    Sousa, JM
    Setnes, M
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 1017 - 1020
  • [26] Case Study on Data-driven Deployment of Program Analysis on an Open Tools Stack
    Ljungberg, Anton
    Akerman, David
    Soderberg, Emma
    Lundh, Gustaf
    Sten, Jon
    Church, Luke
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE (ICSE-SEIP 2021), 2021, : 208 - 217
  • [27] Usability and Adoption of Graphical Tools for Data-Driven Development
    Weber, Thomas
    Mayer, Sven
    PROCEEDINGS OF THE 2024 CONFERENCE ON MENSCH UND COMPUTER, MUC 2024, 2024, : 231 - 241
  • [28] Manufacturing as a Data-Driven Practice: Methodologies, Technologies, and Tools
    Cerquitelli, Tania
    Pagliari, Daniele Jahier
    Calimera, Andrea
    Bottaccioli, Lorenzo
    Patti, Edoardo
    Acquaviva, Andrea
    Poncino, Massimo
    PROCEEDINGS OF THE IEEE, 2021, 109 (04) : 399 - 422
  • [29] Data-driven informatics tools targeting patients and providers
    Ohno-Machado, Lucila
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (06) : 1039 - 1039
  • [30] Data-driven resolvent analysis
    Herrmann, Benjamin
    Baddoo, Peter J.
    Semaan, Richard
    Brunton, Steven L.
    McKeon, Beverley J.
    JOURNAL OF FLUID MECHANICS, 2021, 918