Illumination correction of dyed fabrics approach using Bagging-based ensemble particle swarm optimization-extreme learning machine

被引:12
|
作者
Zhou, Zhiyu [1 ]
Xu, Rui [1 ]
Wu, Dichong [2 ]
Zhu, Zefei [3 ]
Wang, Haiyan [4 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Informat Sci & Technol, 840 Xuelin St, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Business Adm, 18 Xueyuan St, Hangzhou 310018, Zhejiang, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Mech Engn, 188 Xuelin St, Hangzhou 310018, Zhejiang, Peoples R China
[4] Zhejiang Police Vocat Acad, Dept Secur & Prevent, 383 Tianmushang St, Hangzhou 310018, Zhejiang, Peoples R China
关键词
illumination correction; Bagging; extreme learning machine; particle swarm optimization; COLOR CONSTANCY; CHROMATICITY;
D O I
10.1117/1.OE.55.9.093102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Changes in illumination will result in serious color difference evaluation errors during the dyeing process. A Bagging-based ensemble extreme learning machine (ELM) mechanism hybridized with particle swarm optimization (PSO), namely Bagging-PSO-ELM, is proposed to develop an accurate illumination correction model for dyed fabrics. The model adopts PSO algorithm to optimize the input weights and hidden biases for the ELM neural network called PSO-ELM, which enhances the performance of ELM. Meanwhile, to further increase the prediction accuracy, a Bagging ensemble scheme is used to construct an independent PSO-ELM learning machine by taking bootstrap replicates of the training set. Then, the obtained multiple different PSO-ELM learners are aggregated to establish the prediction model. The proposed prediction model is evaluated with real dyed fabric images and discussed in comparison with several related methods. Experimental results show that the ensemble color constancy method is able to generate a more robust illuminant estimation model with better generalization performance. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Extreme Learning Machine and Particle Swarm Optimization for Inflation Forecasting
    Alfiyatin, Adyan Nur
    Rizki, Agung Mustika
    Mahmudy, Wayan Firdaus
    Ananda, Candra Fajri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 473 - 478
  • [32] A hybrid Particle swarm optimization -Extreme Learning Machine approach for Intrusion Detection System
    Ali, Mohammed Hasan
    Fadlizolkipi, Mohamad
    Firdaus, Ahmad
    Khidzir, Nik Zulkarnaen
    2018 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2018,
  • [33] Novel Approach for Incremental Learning using Ensemble of SVMs with Particle Swarm Optimization
    Gupta, Aditya
    Gusain, Kunal
    Kumar, Deepika
    2016 11TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2016, : 426 - 430
  • [34] Extreme Learning Machine based on Improved Multi-Objective Particle Swarm Optimization
    Tan, Kaimin
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 333 - 337
  • [35] An Improved Extreme Learning Machine Based on Variable-length Particle Swarm Optimization
    Xue, Bingxia
    Ma, Xin
    Gu, Jason
    Li, Yibin
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 1030 - 1035
  • [36] A Parameter Adaptive Particle Swarm Optimization Algorithm for Extreme Learning Machine
    Li Bin
    Li Yibin
    Liu Meng
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2448 - 2453
  • [37] Feature Selection Using Particle Swarm Optimization and Ensemble-Based Machine Learning Models for Ransomware Detection
    Neel Kumar Yadav Gurukala
    Deepak Kumar Verma
    SN Computer Science, 5 (8)
  • [38] Spoken Language Identification Based on Particle Swarm Optimisation–Extreme Learning Machine Approach
    Musatafa Abbas Abbood Albadr
    Sabrina Tiun
    Circuits, Systems, and Signal Processing, 2020, 39 : 4596 - 4622
  • [39] Regularized Extreme Learning Machine Ensemble Using Bagging for Tropical Cyclone Tracks Prediction
    Zhang, Jun
    Jin, Jian
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 203 - 215
  • [40] Regularized Extreme Learning Machine Based on Remora Optimization Algorithm for Printed Matter Illumination Correction
    Li, Jianqiang
    Zhang, Xiaorong
    Yao, Yingdong
    Qi, Yubao
    Peng, Laihu
    IEEE Access, 2024, 12 : 3718 - 3735