High-dimensional and large-scale phenotyping of yeast mutants

被引:219
|
作者
Ohya, Y
Sese, J
Yukawa, M
Sano, F
Nakatani, Y
Saito, TL
Saka, A
Fukuda, T
Ishihara, S
Oka, S
Suzuki, G
Watanabe, M
Hirata, A
Ohtani, M
Sawai, H
Fraysse, N
Latgé, JP
François, JM
Aebi, M
Tanaka, S
Muramatsu, S
Araki, H
Sonoike, K
Nogami, S
Morishita, S
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci, Kashiwa, Chiba 2778562, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwa, Chiba 2778562, Japan
[3] Japan Sci & Technol Corp, Inst Bioinformat & Res & Dev, Chiyoda Ku, Tokyo 1028666, Japan
[4] Univ Tokyo, Dept Comp Sci, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1130033, Japan
[5] Inst Pasteur, Unite Aspergillus, F-75015 Paris, France
[6] CNRS, Ctr Bioingn Gilbert Durand, UMR 5504, INRA, F-31077 Toulouse, France
[7] ETH, ETH Honggerberg, Inst Microbiol, CH-8093 Zurich, Switzerland
[8] Natl Inst Genet, Div Microbial Genet, Mishima, Shizuoka 4118540, Japan
关键词
cell morphology; functional genomics; high-dimensional phenotyping; phenome;
D O I
10.1073/pnas.0509436102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the most powerful techniques for attributing functions to genes in uni- and multicellular organisms is comprehensive analysis of mutant traits. In this study, systematic and quantitative analyses of mutant traits are achieved in the budding yeast Saccharomyces cerevisiae by investigating morphological phenotypes. Analysis of fluorescent microscopic images of triple-stained cells makes it possible to treat morphological variations as quantitative traits. Deletion of nearly half of the yeast genes not essential for growth affects these morphological traits. Similar morphological phenotypes are caused by deletions of functionally related genes, enabling a functional assignment of a locus to a specific cellular pathway. The high-dimensional phenotypic analysis of defined yeast mutant strains provides another step toward attributing gene function to all of the genes in the yeast genome.
引用
收藏
页码:19015 / 19020
页数:6
相关论文
共 50 条
  • [31] LIDER: An Efficient High-dimensional Learned Index for Large-scale Dense Passage Retrieval
    Wang, Yifan
    Ma, Haodi
    Wang, Daisy Zhe
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 154 - 166
  • [32] Monitoring high-dimensional data for failure detection and localization in large-scale computing systems
    Chen, Haifeng
    Jiang, Guofei
    Yoshihira, Kenji
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (01) : 13 - 25
  • [33] Asynchronous Distributed ADMM for Learning with Large-Scale and High-Dimensional Sparse Data Set
    Wang, Dongxia
    Lei, Yongmei
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT II, 2019, 302 : 259 - 274
  • [34] AliGater: a framework for the development of bioinformatic pipelines for large-scale, high-dimensional cytometry data
    Ekdahl, Ludvig
    Arrizabalaga, Antton Lamarca
    Ali, Zain
    Cafaro, Caterina
    de Lapuente Portilla, Aitzkoa Lopez
    Nilsson, Bjorn
    NEURO-ONCOLOGY ADVANCES, 2023, 5 (01)
  • [35] Large-scale high-dimensional indexing by sparse hashing with l0 approximation
    Pedro Borges
    André Mourão
    João Magalhães
    Multimedia Tools and Applications, 2017, 76 : 24389 - 24412
  • [36] Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models
    de Una-Alvarez, Jacobo
    TEST, 2023, 32 (04) : 1184 - 1186
  • [37] Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval
    Zhang, Yu
    Wu, Jianxin
    Cai, Jianfei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) : 2407 - 2419
  • [38] High-dimensional MRI data analysis using a large-scale manifold learning approach
    Loc Tran
    Debrup Banerjee
    Jihong Wang
    Ashok J. Kumar
    Frederic McKenzie
    Yaohang Li
    Jiang Li
    Machine Vision and Applications, 2013, 24 : 995 - 1014
  • [39] High-dimensional MRI data analysis using a large-scale manifold learning approach
    Tran, Loc
    Banerjee, Debrup
    Wang, Jihong
    Kumar, Ashok J.
    McKenzie, Frederic
    Li, Yaohang
    Li, Jiang
    MACHINE VISION AND APPLICATIONS, 2013, 24 (05) : 995 - 1014
  • [40] Distributed high-dimensional similarity search approach for large-scale wireless sensor networks
    Hu, Haifeng
    He, Jiefang
    Wu, Jianshen
    Wang, Kun
    Zhuang, Wei
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (03):