High-dimensional and large-scale phenotyping of yeast mutants

被引:219
|
作者
Ohya, Y
Sese, J
Yukawa, M
Sano, F
Nakatani, Y
Saito, TL
Saka, A
Fukuda, T
Ishihara, S
Oka, S
Suzuki, G
Watanabe, M
Hirata, A
Ohtani, M
Sawai, H
Fraysse, N
Latgé, JP
François, JM
Aebi, M
Tanaka, S
Muramatsu, S
Araki, H
Sonoike, K
Nogami, S
Morishita, S
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci, Kashiwa, Chiba 2778562, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwa, Chiba 2778562, Japan
[3] Japan Sci & Technol Corp, Inst Bioinformat & Res & Dev, Chiyoda Ku, Tokyo 1028666, Japan
[4] Univ Tokyo, Dept Comp Sci, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1130033, Japan
[5] Inst Pasteur, Unite Aspergillus, F-75015 Paris, France
[6] CNRS, Ctr Bioingn Gilbert Durand, UMR 5504, INRA, F-31077 Toulouse, France
[7] ETH, ETH Honggerberg, Inst Microbiol, CH-8093 Zurich, Switzerland
[8] Natl Inst Genet, Div Microbial Genet, Mishima, Shizuoka 4118540, Japan
关键词
cell morphology; functional genomics; high-dimensional phenotyping; phenome;
D O I
10.1073/pnas.0509436102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the most powerful techniques for attributing functions to genes in uni- and multicellular organisms is comprehensive analysis of mutant traits. In this study, systematic and quantitative analyses of mutant traits are achieved in the budding yeast Saccharomyces cerevisiae by investigating morphological phenotypes. Analysis of fluorescent microscopic images of triple-stained cells makes it possible to treat morphological variations as quantitative traits. Deletion of nearly half of the yeast genes not essential for growth affects these morphological traits. Similar morphological phenotypes are caused by deletions of functionally related genes, enabling a functional assignment of a locus to a specific cellular pathway. The high-dimensional phenotypic analysis of defined yeast mutant strains provides another step toward attributing gene function to all of the genes in the yeast genome.
引用
收藏
页码:19015 / 19020
页数:6
相关论文
共 50 条
  • [1] Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells
    Jessie A. G. van Buggenum
    Jan P. Gerlach
    Sabine E. J. Tanis
    Mark Hogeweg
    Pascal W. T. C. Jansen
    Jesse Middelwijk
    Ruud van der Steen
    Michiel Vermeulen
    Hendrik G. Stunnenberg
    Cornelis A. Albers
    Klaas W. Mulder
    Nature Communications, 9
  • [2] Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells
    van Buggenum, Jessie A. G.
    Gerlach, Jan P.
    Tanis, Sabine E. J.
    Hogeweg, Mark
    Jansen, Pascal W. T. C.
    Middelwijk, Jesse
    van der Steen, Ruud
    Vermeulen, Michiel
    Stunnenberg, Hendrik G.
    Albers, Cornelis A.
    Mulder, Klaas W.
    NATURE COMMUNICATIONS, 2018, 9
  • [3] Visualizing Large-scale and High-dimensional Data
    Tang, Jian
    Liu, Jingzhou
    Zhang, Ming
    Mei, Qiaozhu
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), 2016, : 287 - 297
  • [4] LARGE-SCALE HIGH-DIMENSIONAL CLUSTERING WITH FAST SKETCHING
    Chatalic, Antoine
    Gribonval, Remi
    Keriven, Nicolas
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4714 - 4718
  • [5] RECURSIVE REDUCTION NET FOR LARGE-SCALE HIGH-DIMENSIONAL DATA
    Ke, Tsung-Wei
    Liu, Tyng-Luh
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1903 - 1907
  • [6] Batched Large-scale Bayesian Optimization in High-dimensional Spaces
    Wang, Zi
    Gehring, Clement
    Kohli, Pushmeet
    Jegelka, Stefanie
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [7] A Supervised Learning Model for High-Dimensional and Large-Scale Data
    Peng, Chong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2017, 8 (02)
  • [8] Feature screening with large-scale and high-dimensional survival data
    Yi, Grace Y.
    He, Wenqing
    Carroll, Raymond. J.
    BIOMETRICS, 2022, 78 (03) : 894 - 907
  • [9] Parallel algorithms for clustering high-dimensional large-scale datasets
    Nagesh, H
    Goil, S
    Choudhary, A
    DATA MINING FOR SCIENTIFIC AND ENGINEERING APPLICATIONS, 2001, 2 : 335 - 356
  • [10] High-Dimensional Signature Compression for Large-Scale Image Classification
    Sanchez, Jorge
    Perronnin, Florent
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1665 - 1672