Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints

被引:196
|
作者
Kuosmanen, Timo [1 ,2 ]
Kortelainen, Mika [3 ]
机构
[1] Aalto Univ, Sch Econ, Helsinki 00101, Finland
[2] MTT Agrifood Res Finland, Helsinki 00410, Finland
[3] Univ Manchester, Sch Social Sci, Manchester M13 9PL, Lancs, England
关键词
Data envelopment analysis (DEA); Frontier estimation; Nonparametric least squares; Productive efficiency analysis; Stochastic frontier analysis (SFA); MAXIMUM-LIKELIHOOD; EFFICIENCY; INEFFICIENCY; CONSISTENCY; CONVERGENCE; REGRESSION; MODELS; RATES; DEA;
D O I
10.1007/s11123-010-0201-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
The field of productive efficiency analysis is currently divided between two main paradigms: the deterministic, nonparametric Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier Analysis (SFA). This paper examines an encompassing semiparametric frontier model that combines the DEA-type nonparametric frontier, which satisfies monotonicity and concavity, with the SFA-style stochastic homoskedastic composite error term. To estimate this model, a new two-stage method is proposed, referred to as Stochastic Non-smooth Envelopment of Data (StoNED). The first stage of the StoNED method applies convex nonparametric least squares (CNLS) to estimate the shape of the frontier without any assumptions about its functional form or smoothness. In the second stage, the conditional expectations of inefficiency are estimated based on the CNLS residuals, using the method of moments or pseudolikelihood techniques. Although in a cross-sectional setting distinguishing inefficiency from noise in general requires distributional assumptions, we also show how these can be relaxed in our approach if panel data are available. Performance of the StoNED method is examined using Monte Carlo simulations.
引用
收藏
页码:11 / 28
页数:18
相关论文
共 50 条
  • [31] Semi-Parametric Estimation for Non-Gaussian Non-Minimum Phase ARMA Models
    Davis, Richard A.
    Zhang, Jing
    JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (03) : 251 - 272
  • [32] Cumulative estimation in semi-parametric models - (Non-parametric estimator base for a general weight function)
    Hu, HC
    Sun, HY
    SURVEY REVIEW, 2005, 38 (296) : 158 - 164
  • [33] Shrinkage estimation of semi-parametric spatial autoregressive panel data model with fixed effects
    Liu, Yu
    Zhuang, Xiaoyang
    STATISTICS & PROBABILITY LETTERS, 2023, 194
  • [34] Modeling zero response data from willingness to pay surveys - A semi-parametric estimation
    Yoo, SH
    Kim, TY
    Lee, JK
    ECONOMICS LETTERS, 2001, 71 (02) : 191 - 196
  • [35] Hybrid semi-parametric modeling of biological systems: Application to spectroscopic data for the estimation of concentrations
    von Stosch, M.
    Oliveira, R.
    Peres, J.
    Feyo de Azevedo, S.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 1021 - 1026
  • [36] Direct semi-parametric estimation of fixed effects panel data varying coefficient models
    Rodriguez-Poo, Juan M.
    Soberon, Alexandra
    ECONOMETRICS JOURNAL, 2014, 17 (01): : 107 - 138
  • [37] Semi-parametric estimation in the compositional modeling of multicomponent systems from Raman spectroscopic data
    Sowa, Michael G.
    Smith, Michael S. D.
    Kendall, Catherine
    Bock, Erika R.
    Ko, Alex C. -T.
    Choo-Smith, Lin-P'ing
    Stone, Nicholas
    APPLIED SPECTROSCOPY, 2006, 60 (08) : 877 - 883
  • [38] Recurrent neural network for non-smooth convex programming subject to linear equality and bound constraints
    Liu, Qingshan
    Wang, Jun
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 1004 - 1013
  • [39] Smooth Mesh Estimation from Depth Data using Non-Smooth Convex Optimization
    Rosinol, Antoni
    Carlone, Luca
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6633 - 6640
  • [40] On the estimation of stochastic Wiener-Hammerstein-type systems with non-smooth non-linearity
    Chen, CH
    Fassois, SD
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 1494 - 1498