A partially sparse solution to the problem of parameter estimation of CARD model

被引:3
|
作者
Zhang, Ying [1 ]
Wan, Qun [1 ]
Wang, Ming-Hui [2 ]
Yang, Wan-Lin [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Elect Engn, Chengdu 610054, Peoples R China
[2] Sichuan Univ, Inst Comp, Chengdu 610000, Peoples R China
关键词
partially sparse; CARD; basis selection; colored noise;
D O I
10.1016/j.sigpro.2008.04.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper realizes parameter estimation of canonical autoregressive decomposition (CARD) model by computing partially sparse solution to a linear inverse problem. By constructing an over-complete dictionary, it is demonstrated that the solution with respect to the sinusoids is sparse, while that with respect to the colored noise is not. To derive the solution, an alternating optimization algorithm, named Partially Sparse Solution Algorithm (PSSA), is proposed. PSSA is initialized by basis selection method, and updated alternately between estimation of the sinusoids and the colored noise. When updating the sinusoids estimation, diversity minimization is adopted as the criterion for the cost function. As for the estimation of the colored noise, Maximum likelihood (ML) criterion is used. Several numerical examples confirm validation and Superiority of PSSA. Firstly, it generalizes basis selection method to colored noise background. Secondly, the number of the sinusoids can be estimated based on the solution; so the predetermined number of the sinusoids needs not to be exact. Thirdly, PSSA shows little sensitivity to the choice of model order and is applicable to short data record. Furthermore, compared with ML method, PSSA attains higher estimation accuracy especially when the sinusoids are located near the peak of the noise spectrum. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2483 / 2491
页数:9
相关论文
共 50 条
  • [41] A review of some existence results on parameter estimation problem in the three-parameter Weibull model
    Markovic, Darija
    Jukic, Dragan
    KOI 2008: 12TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 103 - 111
  • [42] Sparse model selection and parameter identification
    Duan, XJ
    Wang, ZM
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1746 - 1751
  • [43] An approach of regularization parameter estimation for sparse signal recovery
    Zheng, Chundi
    Li, Gang
    Zhang, Hao
    Wang, Xiqin
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 385 - 388
  • [44] A Sparse Bayesian Learning Algorithm With Dictionary Parameter Estimation
    Hansen, Thomas L.
    Badiu, Mihai A.
    Fleury, Bernard H.
    Rao, Bhaskar D.
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 385 - 388
  • [45] Sparse Bayesian blind image deconvolution with parameter estimation
    Bruno Amizic
    Rafael Molina
    Aggelos K Katsaggelos
    EURASIP Journal on Image and Video Processing, 2012
  • [46] Multidimensional rainfall parameter estimation from sparse network
    Koepsell, Royal W.
    Valdes, Juan B.
    Journal of Hydraulic Engineering, 1991, 117 (07) : 832 - 850
  • [47] Sparse channel parameter estimation based on superimposed training
    Zhao, Jun-Yi
    Meng, Wei-Xiao
    Jia, Shi-Lou
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2008, 29 (06): : 594 - 598
  • [48] Multidimensional Sparse Recovery for MIMO Channel Parameter Estimation
    Steffens, Christian
    Yang, Yang
    Pesavento, Marius
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 66 - 70
  • [49] SPARSE BAYESIAN BLIND IMAGE DECONVOLUTION WITH PARAMETER ESTIMATION
    Amizic, Bruno
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 626 - 630
  • [50] Sparse Parameter Estimation in Economic Time Series Models
    Tonner, Jaromir
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2005, 2005, : 390 - 395