Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis

被引:86
|
作者
Jiang, Li [1 ,2 ]
Xuan, Jianping [1 ,2 ]
Shi, Tielin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Semi-supervised kernel Marginal Fisher analysis; Feature extraction; Dimensionality reduction; Manifold learning; EMD ENERGY ENTROPY; DISCRIMINANT-ANALYSIS; FRAMEWORK; MANIFOLD;
D O I
10.1016/j.ymssp.2013.05.017
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 50 条
  • [31] A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing
    Yu, Kun
    Ma, Hui
    Lin, Tian Ran
    Li, Xiang
    MEASUREMENT, 2020, 165
  • [32] Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes
    Zhong, Shiyong
    Wen, Qiaojun
    Ge, Zhiqiang
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 138 : 203 - 211
  • [33] Semi-Supervised Transfer Learning Method for Bearing Fault Diagnosis with Imbalanced Data
    Zong, Xia
    Yang, Rui
    Wang, Hongshu
    Du, Minghao
    You, Pengfei
    Wang, Su
    Su, Hao
    MACHINES, 2022, 10 (07)
  • [34] An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis
    Jiang, Li
    Shi, Tielin
    Xuan, Jianping
    25TH INTERNATIONAL CONGRESS ON CONDITION MONITORING AND DIAGNOSTIC ENGINEERING (COMADEM 2012), 2012, 364
  • [35] A semi-supervised transferable LSTM with feature evaluation for fault diagnosis of rotating machinery
    Tang, Zhi
    Bo, Lin
    Liu, Xiaofeng
    Wei, Daiping
    APPLIED INTELLIGENCE, 2022, 52 (02) : 1703 - 1717
  • [36] The Fusiongram: a periodic weak fault feature extraction strategy and its application in bearing fault diagnosis
    Xue, Zhengkun
    Zhang, Wanyang
    Xue, Linlin
    Shi, Jinchuan
    Shan, Xiaoming
    Luo, Huageng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [37] Imbalanced fault diagnosis based on semi-supervised ensemble learning
    Jian, Chuanxia
    Ao, Yinhui
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (07) : 3143 - 3158
  • [38] Imbalanced fault diagnosis based on semi-supervised ensemble learning
    Chuanxia Jian
    Yinhui Ao
    Journal of Intelligent Manufacturing, 2023, 34 : 3143 - 3158
  • [39] Fault diagnosis method based on online semi-supervised learning
    Yin, G. (gang.gang88@163.com), 1600, Nanjing University of Aeronautics an Astronautics (25):
  • [40] A semi-supervised feature contrast convolutional neural network for processes fault diagnosis
    Yang, Yuguo
    Shi, Hongbo
    Tao, Yang
    Ma, Yao
    Song, Bing
    Tan, Shuai
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 151