Sobolev spaces and hyperbolic fillings

被引:12
|
作者
Bonk, Mario [1 ]
Saksman, Eero [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Box 95155, Los Angeles, CA 90095 USA
[2] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
QUASI-CONFORMAL MAPPINGS; POINCARE INEQUALITY;
D O I
10.1515/crelle-2015-0036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Z be an Ahlfors Q-regular compact metric measure space, where Q>0. For p > 1 we introduce a new (fractional) Sobolev space A(p)(Z) consisting of functions whose extensions to the hyperbolic filling of Z satisfy a weak-type gradient condition. If Z supports a Q-Poincare inequality with Q > 1, then A(Q)(Z) coincides with the familiar ( homogeneous) Hajlasz-Sobolev space.
引用
收藏
页码:161 / 187
页数:27
相关论文
共 50 条