Stability of secant bundles on the second symmetric power of curves

被引:3
|
作者
Basu, Suratno [1 ]
Dan, Krishanu [2 ]
机构
[1] HBNI, Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[2] Chennai Math Inst, H1 Sipcot IT Pk, Kelambakkam 603103, Tamil Nadu, India
关键词
Vector bundles; Symmetric power; Stability; Moduli; VECTOR-BUNDLES;
D O I
10.1007/s00013-018-1149-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a rank r stable bundle over a smooth irreducible projective curve C, there is an associated rank 2r bundle over the second symmetric power of C. In this article we study the slope (semi-)stability of this bundle.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 50 条
  • [31] Reconstructing vector bundles on curves from their direct image on symmetric powers
    Indranil Biswas
    D. S. Nagaraj
    Archiv der Mathematik, 2012, 99 : 327 - 331
  • [32] ON BLOWUP OF SECANT VARIETIES OF CURVES
    Ein, Lawrence
    Niu, Wenbo
    Park, Jinhyung
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 3649 - 3654
  • [33] ON SECANT SPACES TO PROJECTIVE CURVES
    BALLICO, E
    COMPOSITIO MATHEMATICA, 1993, 85 (03) : 311 - 313
  • [34] Divisors of secant planes to curves
    Tarasca, Nicola
    JOURNAL OF ALGEBRA, 2016, 454 : 1 - 13
  • [35] Positivity of the second exterior power of the tangent bundles
    Watanabe, Kiwamu
    ADVANCES IN MATHEMATICS, 2021, 385
  • [36] Secant and Popov-like conditions in power network stability
    Monshizadeh, Nima
    Lestas, Loannis
    AUTOMATICA, 2019, 101 : 258 - 268
  • [37] On the stability of kernel bundles over chain-like curves
    Suhas, B. N.
    Mazumdar, Susobhan
    Singh, Amit Kumar
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 164
  • [38] SYMMETRIC DOUBLE VECTOR BUNDLES AND SECOND-ORDER HOLONOMOUS JETS
    PRADINES, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (24): : 1557 - 1560
  • [39] Stable symmetric secant methods with restart
    Burdakov, O.P.
    Cybernetics (English Translation of Kibernetika), 1992, 27 (03):
  • [40] The Grassmannians of secant varieties of curves are not defective
    Chiantini, L
    Ciliberto, C
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (01): : 23 - 28