Solitons for the rotating reduced Maxwell-Bloch equations with anisotropy

被引:18
|
作者
Steudel, H
Zabolotskii, AA
Meinel, R
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Russian Acad Sci, Inst Automat & Electrometry, Siberian Branch, Novosibirsk 630090, Russia
[3] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevE.72.056608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For the reduced Maxwell-Bloch equations with two components of polarization and with an anisotropic dipole moment we establish a hierarchy of soliton solutions by use of Backlund transformations. The N-soliton formulas are given in terms of Vandermonde-like determinants. Differences in the respective solution manifolds for the so-called self-induced transparency (SIT) equations and three types of reduced Maxwell-Bloch equations are pointed out.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] REDUCTION OF THE MAXWELL-BLOCH EQUATIONS TO A STANDARD FORM
    SOLARI, HG
    GILMORE, R
    OPTICS COMMUNICATIONS, 1989, 71 (1-2) : 85 - 91
  • [32] Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
    Huang, Li-Li
    Qiao, Zhi-Jun
    Chen, Yong
    CHINESE PHYSICS B, 2018, 27 (02)
  • [33] GLOBAL STOCHASTICITY CRITERION FOR MAXWELL-BLOCH EQUATIONS
    GANGOPADHYAY, G
    RAY, DS
    PHYSICAL REVIEW A, 1989, 40 (07): : 3750 - 3753
  • [34] Self-oscillation in the Maxwell-Bloch equations
    Wu, Jie
    Armen, Michael A.
    Mabuchi, Hideo
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (10) : 2382 - 2386
  • [35] FACTORIZATION ASSUMPTION IN THE SOLUTION OF MAXWELL-BLOCH EQUATIONS
    MATULIC, L
    SANCHEZMONDRAGON, JJ
    TORRESCISNEROS, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1734 - 1734
  • [36] Rogue waves of the Hirota and the Maxwell-Bloch equations
    Li, Chuanzhong
    He, Jingsong
    Porseizan, K.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [37] Lattices of Neumann oscillators and Maxwell-Bloch equations
    Saksida, Pavle
    NONLINEARITY, 2006, 19 (03) : 747 - 768
  • [38] Integrability and geometric prequantization of Maxwell-Bloch equations
    Puta, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (03): : 243 - 250
  • [39] The Maxwell-Bloch equations on fractional Leibniz algebroids
    Ivan, Mihai
    Ivan, Gheorghe
    Opris, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 50 - 58
  • [40] Homoclinic orbits in the Maxwell-Bloch equations with a probe
    Holm, DD
    Kovacic, G
    Wettergren, TA
    PHYSICAL REVIEW E, 1996, 54 (01): : 243 - 256