BRWM: A relevance feedback mechanism for web page clustering

被引:0
|
作者
Anagnostopoulos, Ioannis [1 ]
Anagnostopoulos, Christos [2 ]
Vergados, Dimitrios D.
Maglogiannis, Ilias
机构
[1] Univ Aegean, Dept Informat & Commun Syst Engn, Samos 83200, Greece
[2] Univ Aegean, Dept Cultural Technol & Commun, Lesvos 81100, Greece
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an information system, which classifies web pages in specific categories according to a proposed relevance feedback mechanism. The proposed relevance feedback mechanism is called Balanced Relevance Weighting Mechanism - BRWM and uses the proportion of the already relevant categorized information amount for feature classification. Experimental measurements over an e-commerce framework, which describes the fundamental phases of web commercial transactions verified the robustness of using the mechanism on real data. Except from revealing the accomplished sequences in a web commerce transaction, the system can be used as an assistant and consultation tool for classification purposes. In addition, BRWM was compared with a similar relevance feedback mechanism from the literature over the established corpus of Reuters-21578 text categorization test collection, presenting promising results.
引用
收藏
页码:44 / +
页数:3
相关论文
共 50 条
  • [31] An effective Web page recommender using binary data clustering
    Forsati, Rana
    Moayedikia, Alireza
    Shamsfard, Mehrnoush
    INFORMATION RETRIEVAL JOURNAL, 2015, 18 (03): : 167 - 214
  • [32] A Chinese Web Page Clustering Algorithm Based on the Suffix Tree
    YANG Jian-wu National Key Laboratory for Text Processing
    Wuhan University Journal of Natural Sciences, 2004, (05) : 817 - 822
  • [33] Application of layered clustering and plane partition in web page classification
    Wang, LX
    Han, JM
    Wei, Z
    Zhou, GC
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2325 - 2330
  • [34] Clustering Web Page Sessions Using Sequence Alignment Method
    Poornalatha, G.
    Prakash, S. Raghavendra
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 479 - 483
  • [35] A Web Page Clustering Method Based on Formal Concept Analysis
    Zhang, Zuping
    Zhao, Jing
    Yan, Xiping
    INFORMATION, 2018, 9 (09)
  • [36] An effective Web page recommender using binary data clustering
    Rana Forsati
    Alireza Moayedikia
    Mehrnoush Shamsfard
    Information Retrieval Journal, 2015, 18 : 167 - 214
  • [37] A Method of Automatic Web Information Extraction Based on Page Clustering
    Yang, Tianqi
    Qiu, Taofen
    2011 9TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2011), 2011, : 390 - 393
  • [38] A matrix approach for hierarchical web page clustering based on hyperlinks
    Hou, JY
    Zhang, YC
    WISE 2002: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS ENGINEERING (WORKSHOPS), 2002, : 207 - 216
  • [39] Clustering-Aided Page Object Generation for Web Testing
    Stocco, Andrea
    Leotta, Maurizio
    Ricca, Filippo
    Tonella, Paolo
    WEB ENGINEERING (ICWE 2016), 2016, 9671 : 132 - 151
  • [40] Web Page Clustering for More Efficient Website Accessibility Evaluations
    Mucha, Justyna
    Snaprud, Mikael
    Nietzio, Annika
    COMPUTERS HELPING PEOPLE WITH SPECIAL NEEDS, ICCHP 2016, PT I, 2016, 9758 : 259 - 266