Recognition oriented facial image quality assessment via deep convolutional neural network

被引:16
|
作者
Zhuang, Ning [1 ]
Zhang, Qiang [1 ]
Pan, Cenhui [1 ]
Ni, Bingbing [1 ]
Xu, Yi [1 ]
Yang, Xiaokang [1 ]
Zhang, Wenjun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
关键词
Face image quality; Face selection; Face recognition; Convolutional network; FACE-RECOGNITION; NORMALIZATION; DATABASE;
D O I
10.1016/j.neucom.2019.04.057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quality of facial images significantly impacts the performance of face recognition algorithms. Being able to predict "which facial image is good for recognition" is of great importance for real application scenarios, where a sequence of facial images are always presented and one should select the image frame with "best quality" for the subsequent matching and recognition task. To this end, we introduce a novel facial image quality automatic assessment framework directly targeting at "selecting better face image for better face recognition". For such as purpose, a deep convolutional neural network (DCNN) is trained to output a general facial quality metric which comprehensively considers various quality factors including brightness, contrast, blurriness, occlusion, and pose etc. Based on this trained facial quality metric network, we are able to sort the input face images accordingly and "select" good face images for recognition. Our method is comprehensively evaluated on Color FERET and KinectFace face datasets. Results show that the proposed facial image quality metric network works end-to-end and it well distinguishes "good" images from "bad" ones, which is highly correlated with the final recognition performance. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [41] Deep Convolutional Neural Network with Optical Flow for Facial Micro-Expression Recognition
    Li, Qiuyu
    Yu, Jun
    Kurihara, Toru
    Zhang, Haiyan
    Zhan, Shu
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (01)
  • [42] Real-Time Facial Expression Recognition Using Deep Convolutional Neural Network
    Zeng, Yuwen
    Xiao, Nan
    Wang, Kaidi
    Yuan, Hang
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1536 - 1541
  • [43] Automatic Facial Expression Recognition Based on a Deep Convolutional-Neural-Network Structure
    Shan, Ke
    Guo, Junqi
    You, Wenwan
    Lu, Di
    Bie, Rongfang
    2017 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2017, : 123 - 128
  • [44] Image Quality Assessment Using Combination of Deep Convolutional Neural Networks
    Shikkenawis, Gitam
    Mitra, Suman K.
    Saxena, Ashutosh
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 3 - 11
  • [45] No-reference Image Quality Assessment with Deep Convolutional Neural Networks
    Li, Yuming
    Po, Lai-Man
    Feng, Litong
    Yuan, Fang
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 685 - 689
  • [46] Facial Expression Recognition Using Convolutional Neural Network
    Agrawal, Ved
    Bamb, Chirag
    Mata, Harsh
    Dhunde, Harshal
    Hablani, Ramchand
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 267 - 278
  • [47] A Novel Convolutional Neural Network for Facial Expression Recognition
    Li, Jing
    Mi, Yang
    Yu, Jiahui
    Ju, Zhaojie
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, PT II, 2019, 1006 : 310 - 320
  • [48] Facial Expression Recognition Based on Convolutional Neural Network
    Zhou Yue
    Feng Yanyan
    Zeng Shangyou
    Pan Bing
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 410 - 413
  • [49] An Efficient Convolutional Neural Network Approach for Facial Recognition
    Mangal, Aayushi
    Malik, Himanshu
    Aggarwal, Garima
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 817 - 822
  • [50] FACIAL FRECKLES RECOGNITION USING CONVOLUTIONAL NEURAL NETWORK
    Hu, Liang
    Chen, Li
    Tian, Jing
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 145 - 148