Hitting probabilities and fractal dimensions of multiparameter multifractional Brownian motion

被引:4
|
作者
Chen, Zhen Long [1 ]
机构
[1] Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Multifractional Brownian motion; hitting probability; inverse image; level set; Hausdorff dimension; packing dimension; SAMPLE PATH PROPERTIES;
D O I
10.1007/s10114-013-1307-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study the sample path properties for the harmonisabletype N-parameter multifractional Brownian motion, whose local regularities change as time evolves. We provide the upper and lower bounds on the hitting probabilities of an (N, d)-multifractional Brownian motion. Moreover, we determine the Hausdorff dimension of its inverse images, and the Hausdorff and packing dimensions of its level sets.
引用
收藏
页码:1723 / 1742
页数:20
相关论文
共 50 条
  • [21] FRACTAL DIMENSIONALITY OF BROWNIAN-MOTION IN 2 DIMENSIONS
    KALIA, RK
    DELEEUW, SW
    VASHISHTA, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28): : L905 - L908
  • [22] A note on approximation to multifractional Brownian motion
    HongShuai Dai
    YuQiang Li
    Science China Mathematics, 2011, 54 : 2145 - 2154
  • [23] A note on approximation to multifractional Brownian motion
    Dai HongShuai
    Li YuQiang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2145 - 2154
  • [24] Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type
    Lim, SC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07): : 1301 - 1310
  • [25] Local asymptotic properties of multifractional Brownian motion
    Lim, SC
    Muniandy, SV
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 205 - 214
  • [26] A Process Very Similar to Multifractional Brownian Motion
    Ayache, Antoine
    Bertrand, Pierre R.
    RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 311 - +
  • [27] Multifractional Brownian motion in vehicle crash tests
    Keller, Diana
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 437 - 447
  • [28] On the non-commutative multifractional Brownian motion
    Dozzi, Marco
    Schott, Rene
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2022, 25 (04)
  • [29] HITTING PROBABILITIES OF A BROWNIAN FLOW WITH RADIAL DRIFT
    Lee, Jong Jun
    Mueller, Carl
    Neuman, Eyal
    ANNALS OF PROBABILITY, 2020, 48 (02): : 646 - 671
  • [30] OCCUPATION TIME PROBLEM FOR MULTIFRACTIONAL BROWNIAN MOTION
    Ouahra, Mohamed Ait
    Guerbaz, Raby
    Ouahhabi, Hanae
    Sghir, Aissa
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2019, 39 (01): : 99 - 113