Hitting probabilities and fractal dimensions of multiparameter multifractional Brownian motion

被引:4
|
作者
Chen, Zhen Long [1 ]
机构
[1] Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Multifractional Brownian motion; hitting probability; inverse image; level set; Hausdorff dimension; packing dimension; SAMPLE PATH PROPERTIES;
D O I
10.1007/s10114-013-1307-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study the sample path properties for the harmonisabletype N-parameter multifractional Brownian motion, whose local regularities change as time evolves. We provide the upper and lower bounds on the hitting probabilities of an (N, d)-multifractional Brownian motion. Moreover, we determine the Hausdorff dimension of its inverse images, and the Hausdorff and packing dimensions of its level sets.
引用
收藏
页码:1723 / 1742
页数:20
相关论文
共 50 条